
TCP: Thread Contention Predictor for Parallel Programs

Abstract— With acceptance of chip multicores on desk-
tops and embedded platforms, parallel programs have become
ubiquitous. Existence of multiple threads can cause resource
contention such as, in on-chip shared caches and interconnects.
This may cause a significant degradation in the execution of
parallel programs. Hence, we propose a tool which quantifies
the average number of threads sharing an object and the pattern
in which they share it. We refer this tool as Thread Contention
Predictor (TCP). This information can be calculated at the
object level or at the cache line level according to its use-
case. We believe this information has wide application ranging
from predicting a suitable cache configuration, data mapping
or predicting conflict in transaction memory. In this paper, we
show its use to predict a suitable shared, last level on-chip
cache configuration on a chip multicore platform. Our cache
configuration predictor is 2.33x faster in simulation speed than
the cycle-accurate simulator. We also demonstrate use of TCP
to identify data structures in a program which are “hot” and
may cause performance degradation. We manually fix layout of
such data structures and show up-to 10% and 18% improvement
in execution time and energy-delay product of the application.
Keywords: parallel programs, thread contention, chip multi-
core caches

I. INTRODUCTION

Ever increasing demand for performance, has caused

proliferation of chip multicores (CMPs) on desktop, mobile

computing and embedded platforms. As a result, parallel

programs have become ubiquitous to take advantage

of parallelism offered by CMPs. However, writing a

parallel program though looks straight-forward, is a very

complicated task. This is because of deadlocks, livelocks

caused by synchronization variables. Lot of tools are

available to debug such problems. But not many tools are

available which will help programmers to identify “hot”

data structures in their programs or which can quantify the

average number of threads sharing an object or contention

caused by an object. Such tool will help programmers

to identify bottlenecks in their programs and re-write it

accordingly. Our thread contention predictor (TCP) tool

fills this gap. Following are our contributions in this paper:

1) First, we introduce a term to measure the average

number of threads sharing an object. We call it as a

“sharing index”. However, an object with higher value

of sharing index does not mean that, that object will

degrade execution of a parallel program. Hence, we

also introduce another term called a“contention index”

to measure contention that might be caused by threads

accessing that object.

2) CMPs use shared caches as the last level cache (LLC)

to increase on-chip cache utilization. Kim et al. [1]

proposed SNUCA and DNUCA cache access policies

to access the large on-chip cache. We demonstrate the

application of TCP to predict a suitable cache access

policy for a given application using a single time cycle

accurate simulation. Our model is 2.33 times faster

than the cycle-accurate simulator.

3) We also show the use of sharing and contention

indexes of frequently accessed addresses in a program

to identify false sharing caused in it. On manually

fixing such data structures, program execution showed

up-to 10% improvement in the execution time and

18% improvement in energy-delay product of the

application on a cycle accurate.

Our paper is organized as follows: Section II describes

sharing and contention indexes of an object in TCP. The

use of sharing and contention indexes to predict a suitable

on-chip cache is described in section III. We refer this tool

as cache configuration predictor(CPP). Section IV describes

experimental setup and results of our CPP tool. Section V-B

elucidates use of TCP in identifying false data sharing in

a program. Section VI describes related work. Finally we

conclude our paper in Section VII.

II. TCP

TCP can evaluate sharing and contention indexes at the

level of cache line addresses or individual data addresses

or objects as well. Hence, we will use the term object to

emphasize its flexibility. Currently, we have implemented

this tool with an in-house cycle accurate simulator but this

can easily be ported to a freely available dynamic binary

instrumentation tool such as, Pin1. For every object, we

track the number of times each thread accesses it. This is

used to evaluate a sharing index of that object.

A. Sharing Index (SI)

We define the sharing index of an object as the average

number of threads accessing it. TCP keeps track of the

number of times each thread accesses an object. It deter-

mines sharing index using Eq. (1), where, Pi is probability

of thread i accessing that object. SI has a resemblance

to the term, “entropy”, widely used in information the-

ory. Shannon[2] define entropy as in Eq. 1 to denote a

1Pin: Building customized program analysis tools with dynamic instru-
mentation, PLDI, 2005

measure of information present in a message or the rate at

which information is produced by various sources(1, 2.., T).

P1, P2....PT are probabilities of T sources generating

events. We borrow entropy formulation to denote average

number of threads accessing a variable.

Entropy = −
∑

0≤i<T

Pi. log(Pi) (1)

log(SI) = −
∑

0≤i<T

Pi. log(Pi) (2)

SI = 2log(SI) (3)

An object with higher SI denotes more number of

threads access it. For private objects such as local variables

declared on the stack, Pi = 1 and log(Pi) = 0, for the

thread which accesses that object. For rest of the threads,

Pi = 0. Hence, SI is equal to 1 which tallies with the

fact that only one thread accesses that object. On contrary,

consider all threads make equal number of accesses to an

object. So Pi = 1/T for all threads, where T is the total

number of threads present in an application. In this case,

SI = T . Hence, this formula captures the notion of number

of threads accessing an object. However, it does not capture

interleaving of accesses made by different threads. This is

captured by our next term, “contention index”.

B. Contention Index (CI)

Objects with higher SI, may not become performance

bottleneck if accesses made by all threads are serialized and

not interleaved. Contention index quantifies interleaving of

accesses made by different threads. It is measured in terms

of a runlength of accesses. A runlength of an object is

the number of times the same thread accesses that object

consecutively. If the object is accessed by a different thread,

runlength counter starts again from zero. This is shown

pictorially in Fig. 1. In Fig. 1(A) both the threads make four

consecutive accesses. So there are total 8 accesses made

by two threads altogether and with two runlengths of size

four. Whereas, in Fig. 1(B) accesses made by two threads

are interleaved. There are one runlength of 3 accesses,

two runlengths of size 2 and one runlength of size 1. We

calculate weighted average of runlengths and its dispersion

to determine its contention causing ability. Smaller average

runlength, can cause more contention in shared resources

like cache or interconnect and vice-verse.

C. Data Filter

As explained above, SI gives the number of threads

sharing an object, whereas, CI gives the pattern in which

it is shared by various threads. If CI i.e. runlength is very

low then it means that after a few accesses from one thread,

it is intercepted by another thread. If CI of that object is

improved, it may improve program execution. Improvement

Object A

Runlength

of 4 accesses

for Thread 1

Runlength for Thread 1

begins (Rd/Wr of Thread 1)

Runlength for Thread 1

ends

Runlength

of 4 accesses

for Thread 2

Runlength for Thread 2

begins

Runlength for Thread 2

ends

Object A

Time Line
Time Line

(A) (B)

Figure 1. Both the the threads (t1 and t2) make four accesses each.
However, in (A), four accesses made by these threads are not interleaved.
Hence, these accesses have a runlength of four. Whereas, in (B), accesses
made by these threads are interleaved. There are 1 runlength of size 3, 2
runlengths of size 2 and one runlength of size 1.

depends on the actual number of times that object is used.

Hence, we introduce another term, which we refer to as

“Data Filter (DF)”. We define DF as follows:

DF =
N ∗ SI

CI
(4)

where, N is the total number of accesses made by different

threads, SI and CI are sharing and contention indexes of

that object. An object is important in a program execution

if it is accessed significant number of times and shared by

many threads and it has more contention causing potential.

For every object, TCP also tracks instruction addresses

which accessed those objects. These objects can be mapped

back to data structures using information found in the

executable, instruction addresses and by intercepting malloc

calls. Depending on frequency of accesses, “hot” data

structures can be determined. This can help programmers

to re-organize data structures so that its SI and mainly

CI improves. This can also tell whether changes in lock

granularity might improve CI. Using this information, pro-

grammers can also determine the number of threads created

in a data parallel loop. Such decisions can be taken with an

offline analysis. In section V-B, we demonstrate how our

tool can be used to determine false sharing caused due to

various members of a large structure in a multi-threaded

application. First, we describe the application of TCP to

predict a suitable cache configuration for CMPs.

III. CACHE POLICY PREDICTOR (CPP)

Due to advances in the technology, the number of cores

present on the CMP has increased and so has the size of

on-chip cache. As a result, large caches are manufactured

using smaller banks for power and performance reasons.

However, such cache offers variable latency to the cores

present on the CMP [1]. Kim et al. [1] proposed two

major cache access policies for such dispersed caches,

namely, static nonuniform cache access (SNUCA) and

dynamic nonuniform cache access (DNUCA). In SNUCA,

predetermined bits of the memory address determine the

bank in which data is cached. Whereas, in DNUCA, the

whole address space is mapped onto a single column and

predetermined bits decide the row in which data is cached.

Data can be present in any of the banks in that row. These

banks form a “bankset”. On an L1 miss, L1 first checks data

in the nearest L2 bank and if it is a miss, then rest of the L2

banks in that bankset are searched. If data is not present in

any of these banks, then it is read in the nearest L2 bank

from the offchip DRAM. In DNUCA, as private data is

cached in the nearest bank, it offers lesser latency. On the

other hand, in SNUCA, data could be in farther bank even

if it is private, offering higher latency than that in DNUCA.

In case data is shared and is present in the farther bank, then

in DNUCA, data migrates gradually towards the accessing

core at runtime. However, if data is shared by many threads,

it might migrate in conflicting directions, incurring higher

latency. As the set spans across multiple banks in a row,

traditional replacement logic cannot be applied in DNUCA.

In summary, though DNUCA offers lower access latency,

it suffers from a drawback of complex lookup and replace-

ment logic. On the other hand, SNUCA has simple lookup

logic but may offer higher cache access latency. Hence,

at design time, architects have to make a careful decision

between SNUCA and DNUCA policies. Performing cycle-

accurate simulation of many workloads is time consuming.

Therefore, we solve this problem by making use of data

collected by TCP with a one-time cycle-accurate simula-

tion on SNUCA platform. Here, SI, CI are evaluated per

cache line address level. We call this approach as cache

configuration predictor (CPP). Architects can use CPP to

quickly make a choice between DNUCA and SNUCA for

a given application.

We consider a scalable tiled architecture in this study

which is shown in Fig. 2. In tiled architecture, tiles are

replicated and connected through an on-chip switched-

network (NoC). Each tile has a core, a private L1 in-

struction and data cache, L2 cache and a router. In our

implementation, L2 cache is distributed across all tiles and

it is shared by all cores. To maintain cache coherence

between private L1 caches, a directory information is

present in each tile. These tiles are connected to one another

via 2D-mesh NoC and per-tile router.

In DNUCA, data may migrate in conflicting directions

if it is shared by many threads at the same time. Hence,

interleaving of accesses made by different threads deter-

mines cache access latency. If thread t1 reads data for the

first time then it is read in the nearest L2 slice from the

offchip DRAM. Then onwards, it finds data in its nearest L2

slice on making consecutive accesses to that address. Thus

achieving lower L2 access latency. If some other thread

t2 accesses the same data, then it will not find data in its

Core

L1

L2
R

Router

DRAM

Controller

Off-chip

DRAM

Chip MultiCore (CMP)

Figure 2. Tiled CMP used for experimentation.

nearest L2 slice. It has to search rest of the L2 slices in a

bankset. However, slowly data migrates towards its nearest

L2 slice and then it also enjoys lower L2 access latency.

Such a scenario is possible in case one thread initializes

data and then hands it over to its helper thread for further

processing. In this case since both the threads enjoy lower

L2 access latency, DNUCA is preferable. However, in case

of a synchronization variable or a barrier, where multiple

threads access it at the same time, most of the threads have

to search all the peer L2 slices in a bankset, incurring a

lot of overhead. But instead, if SNUCA policy is used for

such addresses, then all of them make a single access to the

“home location” of that address, though it is farther than

their nearest L2 slice.

To determine penalties incurred by an application with

these two policies, we make use of SI and CI estimated

by TCP, using a cycle-accurate simulation with SNUCA

policy. For every cache line address, we determine total

number of accesses made by each thread to that address

and maintain runlength statistics per thread.

A. Estimation of Overhead in DNUCA and SNUCA

The meaning of the various terms used in CPP model is

explained in Table I.

As an example, in fig. 1(A), threads t1 and t2 execute

on cores 0 and 1 respectively. There are four L2 slices in

a row. Suppose, distance between t1 and four L2 slices in

a bankset is 1, 2, 3 and 4. We make the same assumption

for t2. In SNUCA, data is cached in its “home” location,

decided by some predetermined bits from its memory

address. Consider distance of home L2 slice from t1 and

t2 is 3(D1 Home = 3) and 4 (D2 Home = 4), respectively.

Assuming, data is already read from offchip DRAM, since

each thread makes four accesses to L2 home slice in Fig.

1(A), SNUCA cost is 28 (4*3 + 4*4).

In DNUCA, as a worst case situation, we assume, for

beginning of every runlength, data is not present in the

nearest L2 slice for all threads. This is because, since

previous access is made by some other thread, data might

be present in the nearest tile of that thread. So we assume

that for the beginning of every runlength of all threads, they

search data in all peer L2 slices in a bankset. If DNUCA

cost, calculated using this assumption is less than SNUCA

cost, then DNUCA definitely will give better performance

Table I
Table gives the meaning of various terms, used in CPP model

Parameter Description

ti thread executing on core i
T total # of threads present in an application

Aij
total # of accesses made by thread i to cache line
address (CLA) j

N total # of data cache line addresses

K

runlengths of size 0, 1, ..K tracked during one-
time simulation on SNUCA. Runlengths of size
equal to and greater than K are counted by (K−

1)th array entry.

rijk
of times thread i exhibits runlengths of size k
of an address j

Dip
distance between L1 in tile i and L2 slice in tile
p where data can be cached in DNUCA

P total # of peer L2 slices in a bankset in DNUCA

Di Nearest
distance between L1 in tile i and its nearest L2
slice where address can be cached in DNUCA

Di Average

average distance between L1 in tile i and all L2
slices in a bankset where address can be cached
in DNUCA

Di Home
distance between L1 in tile i and “home” tile,
where data is cached in SNUCA

for that application. Hence, in the above example, as

distance from peer L2 slices in a bankset where data can

be cached is 1, 2, 3 and 4, for both the threads, cost

required to search in DNUCA for the first access in the

runlength, is 10((1+2+3+4)*1) each. To determine distance

from the L2 slice where data can be found for rest of the

accesses, we evaluate SI and CI of aggregate statistics of all

threads. From Eq. (1), SI is 2 in this case, which is obvious

since both the threads make equal number of accesses to

this address. CI (weighted average runlength) is four. We

consider distance between from the nearest L2 slice for

rest of the accesses in a runlength, if either SI is 1 or

weighted average runlength is greater than 2. In this case,

distance between thread and its nearest L2 slice is 1. Hence,

DNUCA cost for rest of three accesses of each thread is

(3*1=3). Total DNUCA cost = 2*3+2*10 = 26, which is

less than that obtained for SNUCA, which is 28. Hence, for

this application we conclude that DNUCA policy is better.

Now let us find DNUCA cost for Fig. 1(B). There are 1

runlength of size 1, 2 runlengths of size 2 and 1 runlength

of size 3. So total cost required to search data for the first

access of every runlength in peer L2s is 40 ((1+2+3+4)*4).

In this case, the weighted average runlength (CI) is 2.

Hence we consider average distance for rest of the accesses

in all runlengths, which is 2.5 ((1+2+3+4)/4). Cost required

for rest of the accesses in runlengths is 10 (2.5*(2+2)).

Total DNUCA cost is 50 (40+10). Hence, in Fig. 1(B)

SNUCA will perform better that DNUCA.

In this application of TCP, we evaluate SI and CI by

aggregating statistics of all thread executing on the cores

belonging to the same column. This gives us SI in terms

Algorithm 1 Cache Policy Predictor

1: Evaluate runlength and total number of accesses made

by each thread to all data addresses using a cycle

accurate simulator with SNUCA

2: Evaluate SNUCA cost using Eq. (5)

3: for first accesses of all runlengths of thread and address

pair do

4: evaluate peer search cost using Eq. (6)

5: end for

6: for rest of the accesses in runlengths of thread and

address pair do

7: Evaluate SI and CI per column for each address

8:

9: if SI == 1‖CI ≥ 3 then

10: Estimate cost using Eq. (7)

11: else

12: Estimate cost using Eq. (8)

13: end if

14: end for

15: Obtain total DNUCAcost using Eq. (9)

16: CostRatio = DNUCAcost/SNUCAcost

17: if CostRatio − lt1 then

18: DNUCA is a suitable policy for this application

19: else

20: SNUCA is a suitable policy for this application

21: end if

of columns and weighted average runlength of a column.

This is because, two threads even if they are executing on

different cores, but belonging to the same column (see Fig.

2), have same nearest L2 slice, which is L2 slice present

in that column. CPP procedure explained above is given in

Algorithm 1.

We use cycle-accurate simulator to obtain runlength and

total accesses made by each thread. We consider data ad-

dresses missed in L1 alone, to obtain time spent in SNUCA

and DNUCA. This is because, instruction addresses usually

show very good spatial and temporal locality. So a very few

instructions misses are served by lower level unified cache.

Same is true for data addresses showing good locality. Time

spent in transit in SNUCA by thread i while accessing an

address j is estimated using Eq. 5.

SNUCAcost =
∑

0≤i<T

∑

0≤j<N

Aij .Di Home (5)

For DNUCA, as explained above, we evaluate cost sepa-

rately for first accesses in every runlength and remaining

accesses in every runlength. Eq. (6) estimates cost for a

thread in tile i, accessing address j, when all peer L2 slices

have to be searched, which is done for the first access of

every runlength of all threads.

PeerSearchCtij =
∑

0≤p<P

∑

0≤k<K

rijk ∗ Dip (6)

For rest of the references made by each thread, which are

not the beginning of a runlength, we first determine SI and

CI by aggregating statistics of all threads belonging to the

same column. If SI of an address is 1 which is true when all

threads accessing that address belong to the same column,

then we use distance between the thread and nearest L2

slice (Di Nearest). We also use Di Nearest, if CI is greater

than or equal to 3. Clearly, if accesses are mostly private or

done through a single column, then runlengths are longer

is size. Threads in that column will find data in its nearest

L2 slice. Eq. (7) estimates cost of the remaining accesses

made by thread i to an address j, which lesser contention

causing potential.

NearSearchCtij = (Aij −
∑

0≤k<K

rijk)∗Di Nearest (7)

However, if SI is greater than 1 or CI is less than

3, then most of the threads will have to search data in

all L2 slices for the remaining accesses in a runlength.

Hence, we use average of distance for all L2 slices in a

bankset (Di Average). If average runlength is less than 3,

then the term (Aij−
∑

0≤k<K rijk) in Eq. (8) is negligible.

PeerSearchCtij in Eq. (7) contributes majority of penalty

in this case. Eq. (8) evaluates time spent in transit by rest

of the accesses in a runlength, for addresses causing more

contention.

AvgDistanceSearchCtij = (Aij−
∑

0≤k<K

rijk)∗Di Average

(8)

Total time spent in accessing data by DNUCA policy is

given by Eq. (9).

DNUCAcost =
∑

0≤i<T

∑

0≤j<N

(PeerSearchCtij+

NearSearchCtij + AvgDistanceSearchCtij)
(9)

If DNUCAcost is lesser than SNUCAcost for an ap-

plication then DNUCA is more suitable policy for that

application and vice verse.

IV. EXPERIMENTAL CONFIGURATION

A. Applications used in Experiments

We evaluate multi-threaded workloads with one-to-one

mapping between threads and cores (Table II)2. We have

skipped initial serial portion and simulate only parallel

section in all the test cases. We test all workloads with

16 threads and execute 1B instructions.

2Rest of the PARSEC benchmarks either use OpenMP APIs or libraries
which are not supported by SESC compiler. Hence remaining benchmarks
cannot be compiled using SESC compiler.

Name Description, WSS(L/M/S)

Alpbench Benchmark [3]

mpegenc Encodes 15 Frames of size 640x336, M

mpegdec Decodes 15 Frames of size 640x336, M

Splash2 Benchmark[4]

cholesky blocked sparse matrix factorization on tk29, L

fft FFT on 1M points, M

lu (noncontinuous) 1024x1024 LU matrix factorization, S

radix Radix sort on 1M keys, M

fmm
simulate interaction of 16K bodies system, M

water spatial simulation of 512 water molecules, M

water nsquared simulation of 512 water molecules, M

barnes Barnes-Hut method on 16K bodies, M

ocean (continuous) 512x512 grid points, L

PARSEC Benchmark[5]

blackscholes SimLarge i/p, Financial Domain, S

swaptions SimLarge i/p, Financial Domain, M

fluidanimate SimMedium i/p, Animation, M

x.264 Encoder SimLarge i/p, Media Domain, M

Table II
TABLE SHOWS APPLICATIONS USED FOR STUDY AND THEIR WSS

INFORMATION(L:LARGE, M:MEDIUM, S:SMALL).

B. Experimental Setup And Methodology

We model all the system components with reasonable

accuracy in our framework. We use SESC [6] to simulate

a core, Ruby component from GEMS [7] to simulate the

cache hierarchy and interconnects. DRAMSim is used to

model the off-chip DRAM. DRAMSim uses MICRON

power model to estimate power consumed in DRAM ac-

cesses. Intacte [8] is used to estimate low level parameters

of the interconnect such as the number of repeaters, wire

width, wire length, degree of pipelining and power con-

sumed by the interconnect. Power consumed by the cache

components is estimated using CACTI 6.0 [9].

In order to estimate the latency (in cycles) of a certain

wire, we estimate area of all components in a tile and

then create the floorplan which is shown in Fig. 3. We

make following assumptions to determine area of various

components at 32nm technology and 3GHz frequency:

• core : This is estimated based on the area of Intel

Nehalem core [10]

• cache : The L1 cache is of size 32KB whose area

is very small and is included in the processor area.

The area occupied by the L2 cache is obtained using

CACTI 6.0. We assume directory information is stored

along with each L2 slice. We conservatively assume

area of per-tile directory to be negligible. If directory

area is considered then interconnect lengths will in-

crease which is more beneficial for the remap policy.

• router : The area of the router is assumed to be quite

negligible at 32nm.

Fig. 3 also shows wire lengths and their power consump-

tion. The latency of a link in clock cycles is equal to the

number of its pipeline stages. To obtain power consumption

of NoC, we compute the link activity and coupling factors

of all links, caused due to the messages sent over NoC.

Processor,

L1 Cache

4 x 4

512KB L2

0.59x3.01

R

5mm

5mm

Link Type Length PipeLineStgs Pwr

L1-R 1.3 2 0.562

L2-R 3.75 7 1.59

R-R H 5 9 2.125

R-R V 5 9 2.125

M-R 0.2 1 0.127

R: Router, L1: L1 cache L2: L2 slice in a tile,

R-R H: Router-Router Horizontal Link,

R-R V: Router-Router Vertical Link

Power is in mW and all lengths are in mm

Link lengths & Power estimated using Intacte

Figure 3. Floorplan of a tile with 512KB L2 slice.

Core
out-of-order execution, 3GHz frequency, issue/fetch/retire width

of 4

L1 Cache

32KB, 2 way, 64 bytes cache line size, access latency of 2

cycles (estimated using CACTI), private, cache coherence using

MOESI protocol

L2 Cache

512KB/tile, 16 way, 64B line size, 4 subbanks per slice, 3

cy. latency (estimated using CACTI), noninclusive, shared and

distributed across all tiles

Directory

Tag bits of L2 cache line include full bitmap for L1 sharers A

separate table of 3000 entries maintains dir info. for cache lines

not cached in L2 but only in L1s.

Interconnect

16 bits flit size, 4x4 2D MESH, deterministic routing, 4 virtual

channels/port, credit based flow control, router queues with

length of 10 buffers

DRAM

offchip, 4GB, DDR2, 667MHz freq, 2 channels of 8B in width,

8 banks 16K rows, 1K columns, close page row management

policy

Table III
SYSTEM CONFIGURATION USED IN EXPERIMENTS

C. Simulation Procedure

Table III gives the system configuration used in our

experiments. The simulation procedure includes computing

the area of tile components, computing link lengths and

low level link parameters using Intacte and then per-

forming simulation. Our simulator estimates the activity

and coupling factors of all the links. Intacte determines

power dissipated in NoC using these activity factors. Power

consumed by the off-chip DRAM and on-chip cache is

estimated using DRAMSim (MICRON) and CACTI power

models, respectively.

V. RESULTS

A. Evaluation of CPP Model

We evaluate time spent in transit if SNUCA or DNUCA

is used for applications using Algorithm (1). Fig. 4 plots

DNUCA cost normalized with respect to SNUCA cost. Fig.

4 also shows normalized time spent in transit obtained using

simulation. Our model evaluates higher DNUCA cost for

applications like mpegenc, mpegdec and raytrace. These

applications show 6%, 8% and 25% degradation in their

execution time, respectively. For applications like ocean,

blackscholes and X.264, cost ratio predicted by TCP is less

than 1, which also tallies with our experimental results.

These applications show 8%, 4% and 2% improvement

in execution time with DNUCA over SNUCA. Most of

the accesses in these applications are private. X.264 has

very poor thread scalability, as a result, with DNUCA,

it can cache data in nearer L2 slice, giving lower L2

access latency. Fig. 4 also shows access latency for these

applications. For other applications like, lu, fmm etc. TCP

estimates higher cost for DNUCA. L2 access latency for

these application is higher in DNUCA than SNUCA. How-

ever, execution time does not show large degradation. This

is because, degradation in execution time depends on the

percentage of load/store instructions compared to other type

of instructions. We simulate out-of-order type of execution,

hence, L2 access latency gets overlapped with execution

of other instructions. CPP predictions are correct for all

applications which we have considered for experimentation.

This tool can be used by system architects to decide among

DNUCA and SNUCA cache policy for their workloads

while designing a system. Fig. 5 plots the simulation speed-

up obtained with CPP over cycle-accurate simulation of

SNUCA and DNUCA policies. On an average, CPP is

2.33x faster than the cycle accurate simulation.

B. TCP to determine false sharing

For complex multi-threaded applications, where the num-

ber of lines in a program is very large, it is difficult to

determine false sharing between threads statically. Static

analysis is conservative, hence it might pad too many

dummy fields in a large data structure to avoid false shar-

ing. We observed experimentally, that due to conservative

extra padding, instead of improving execution time of an

application, in many cases, it increases the number of

offchip DRAM accesses and also working set size of an

application. DRAM access latency is much higher than

time might be spent in cache coherence messages, induced

due to false data sharing. Hence, accurate estimation of

contention causing potential of false sharing is important

to improve performance. We use SI and CI evaluated by

TCP to determine data addresses causing too many cache

coherence overhead. Higher SI indicates more data sharing.

Such addresses might degrade performance if CI for them

is also low. Lower CI means lower average runlength

of accesses made by different threads. This means that

accesses made by one thread are intercepted by another

thread. We automatically filter addresses with SI greater

than 8 and CI less than 2 and also with considerable value

(in ten thousands) of data filter (see section II-C. Our

tool also gives information of instruction addresses which

accessed these data addresses. Considering information

obtained in an executable and trapping malloc calls of

these data addresses, we could determine the culprit data

structures.

Raytrace application in Splash2 [4] benchmark suite

allocates a global gmem structure which has many locks

and a barrier as its members as shown in Fig. 6(a). In this

case, barrier start, pidlock and ridlock get allocated in the

Figure 4. Accuracy of CPP Model

Figure 5. Graph shows simulation speed-up obtained by CPP over cycle-accurate simulation of DNUCA and SNUCA combined.

same cache line of size 64B. Hence, we changed the gmem

structure to as shown in Fig. 6(b).

We collocated pidlock and ridlock with members pid

and rid, respectively, which they protect from a concurrent

use. We also allocated barrier start in a separate cache

line since it is heavily used in raytrace by adding dummy

variables. With these changes, we could obtain a significant

improvement in performance of an application. We made

similar improvements in barnes application and obtained

performance improvement. Table IV summarizes % energy-

delay product and execution time improvement. Consider-

ing Splash2 is a very well studied benchmark suite, still

we could achieve execution time improvement upto 10.7%

in these application with TCP.

Table IV
Table gives % improvement achieved in various metrics with our

source level changes in an application

10.7

Application Execution Time L2 Latency EDP

Raytrace 10.7 23.7 18.9

Barnes 2 4.2 3.77

VI. RELATED WORK

J. Eggers [11] introduced the notion of writelen to pre-

dict suitability between write-invalidate and write-broadcast

cache coherence protocol on multiprocessor systems. Since,

we treat read or write accesses equally, we rephrase the

term as runlength. We determine weighted average of

runlength and its dispersion to filter out addresses which

do not cause contention. Addresses with lower runlength

have more potential to cause resource level contention and

hence users studying applications at the source level, can

make use of contention index to focus their attention for

improving application performance.

VII. CONCLUSION

In this paper, we first introduce metrics to quantify

sharing pattern in a multi-threaded application. We borrow

“entropy” formulation for sharing index to denote the num-

ber of threads accessing an object. Higher sharing index

does not necessarily denote higher contention of that object.

Hence, we next introduce contention index expressed in

terms of runlength. Higher average runlength size denotes

lower contention for that object. We use sharing index

and contention index to estimate transit time spent with

DNUCA and SNUCA cache policies. This model can

typedef struct gmem {
INT nprocs; /* Number of processes. */

INT pid; /* Global process id counter. */

INT rid; /* Global ray id counter. */

|

|

sbarrier_t start; /* Barrier for startup sync. */

slock_t pidlock; /* Lock to increment pid. */

slock_t ridlock; /* Lock to increment rid. */

slock_t memlock; /* Lock for memory manager. */

slock_t (wplock)[MAX_PROCS];

|

} GMEM;

(a) Original structure definition

typedef struct gmem {
INT nprocs; /* Number of processes. */

INT pid; /* Global process id counter. */

slock_t pidlock; /* Lock to increment pid. */

char PAD1[40];

INT rid; /* Global ray id counter. */

slock_t ridlock; /* Lock to increment rid. */

char PAD2[48];

|

|

sbarrier_t start; /* Barrier for startup sync. */

char PAD4[60];

slock_t memlock; /* Lock for memory manager. */

char PAD5[60];

slock_t (wplock)[MAX_PROCS];

|

} GMEM;

(b) Changed structure definition

Figure 6. False sharing detected by TCP

accurately predict a suitable cache configuration for an

application. Results predicted by our model tallies with

the experimental results and has simulation speed-up of

an average 2.33x over the cycle-accurate simulator.

We also demonstrate use of TCP to determine bottle-

necks in the code and find false sharing. With our changes

in the code, we show up-to 10% improvement in execution

time and 18.9% improvement in energy-delay product of

the application. We believe this tool can also be used

to solve other problems such determination of “hot” data

structures, changing lock granularity, data mapping to L2

slices on a tiled architecture and evaluating parallelism

bottlenecks.

REFERENCES

[1] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-
uniform cache structure for wire-delay dominated on-chip
caches,” in ASPLOS, 2002.

[2] C. E. Shannon, “A mathematical theory of communication,”
in Bell Systems Technical Journal, 1948.

[3] M. lap Li, R. Sasanka, S. V. Adve, Y. kuang Chen, and
E. Debes, “The ALPBench benchmark suite for complex
multimedia applications,” in IEEE ISWC, 2005.

[4] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The SPLASH-2 programs: Characterization and method-
ological considerations,” in ISCA, 1995.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
benchmark suite: Characterization and architectural implica-
tions,” in PACT, 2008.

[6] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic,
L. Ceze, S. Sarangi, P. Sack, K. Strauss, and P. Montesinos,
“SESC simulator,” 2005, http://sesc.sourceforge.net.

[7] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.
Hill, and D. A. Wood, “Multifacets general execution-driven
multiprocessor simulator (gems) toolset,” 2005.

[8] R. Nagpal, A. Madan, A. Bhardwaj, and Y. N. Srikant,
“Intacte: an interconnect area, delay, and energy estimation
tool for microarchitectural explorations,” in CASES, 2007.

[9] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“CACTI 6.0: A tool to model large caches,” 2009. [Online].
Available: http://www.hpl.hp.com/techreports/2009/HPL-
2009-85.html

[10] A. Mandke, Y. N. Srikant, and A. Bharadwaj,
“Adaptive power optimization of onchip snuca cache
on tiled chip multicore platform using remap
policy,” no. IISc-CSA-TR-2011-02. [Online]. Available:
http://www.csa.iisc.ernet.in/TR/2011/2/

[11] S. J. Eggers and R. H. Katz, “A characterization of sharing in
parallel programs and its application to coherency protocol
evaluation,” in Proceedings of the 15th Annual International
Symposium on Computer architecture, ser. ISCA ’88.

