
Compiler-Assisted Power Optimization for Clustered
VLIW Architectures

Rahul Nagpal and Y. N. Srikant

Department of CSA
Indian Institute of Science

Bangalore, India�
rahul,srikant � @csa.iisc.ernet.in

Abstract

Clustered VLIW architectures solve the scalability problem associated with flat VLIW ar-
chitectures by partitioning the register file and connecting only a subset of the functional
units to a register file. However, inter-cluster communication in clustered architectures
leads to increased leakage in functional components and a high number of register accesses.
In this paper, we propose compiler scheduling algorithms targeting two previously ignored
power-hungry components in clustered VLIW architectures, viz., instruction decoder and
register file.

We consider a split decoder design and propose a new energy-aware instruction schedul-
ing algorithm that provides 14.5% and 17.3% benefit in the decoder power consumption
on an average over a purely hardware based scheme in the context of 2-clustered and 4-
clustered VLIW machines. In the case of register files, we propose two new scheduling
algorithms that exploit limited register snooping capability to reduce extra register file ac-
cesses. The proposed algorithms reduce register file power consumption on an average by
6.85% and 11.90% (10.39% and 17.78%) respectively, along with performance improve-
ment of 4.81% and 5.34% (9.39% and 11.16%) over a traditional greedy algorithm for
2-Clustered (4-Clustered) VLIW machine.

1 Introduction

VLIW and clustered VLIW style of architectures are in widespread use in embed-
ded devices[40][11]. VLIW architectures[12] leverage the large number of func-
tional units connected to a large unified register file to exploit the explicit instruc-
tion level parallelism in embedded applications in order to successfully achieve the
desired performance. However, operating a large number of functional units in par-
allel demands more ports. This worsen the power and delay problems in VLIW

Preprint submitted to Elsevier 23 July 2010

architectures because for N arithmetic units area of register file grows as ��� , delay
as �����	� , and power dissipation as �
� [36]. Clustered VLIW architectures[10] solve
this scalability problem by partitioning the register file and connecting only a sub-
set of the functional units to a register file. Inter-cluster communication is enabled
by a point-to-point or a bus-based mechanism. Texas Instrument’s VelociTI[40],
HP/ST’s Lx[11], Analog’s TigerSHARC[14], and BOPS’ ManArray[34] are exam-
ples of the recent commercial micro-architectures developed based on clustered ILP
philosophy. IBM’s eLite[7] is a research proposal for a novel clustered architecture.

The simplification of issue logic and trends towards smaller caches in embedded
VLIW architectures leads to a significant fraction of the total power consumption
taking place in functional units, instruction decoder, and register file. The con-
tentions for the limited number of slow inter-cluster communication channels in
the context of clustered VLIW architectures introduce many short idle cycles. This
in turn leads to higher power consumption in clustered VLIW architectures because
of the increase in the leakage component of power that dominates power consump-
tion in the current (65nm) and future technologies. In the past, power optimization
techniques have mostly focused on functional units. However, little work has been
done on power optimization of another two major source of power consumption,
namely, functional units and register file.

The instruction decoder is a well known source of power dissipation in superscalar
architectures[28][23]. It is no surprise that its contribution to the overall processor
power will be even higher in the context of contemporary wide issue VLIW and
clustered VLIW architectures that demand facility to decode up to 8 (or more) in-
structions in parallel every cycle. Frequent access to the instruction decoder raises
the temperature level and makes the leakage power even worse[29]. Thus, opti-
mizing leakage power in instruction decoders is becoming more important by each
process generation. A study in the context of Texas instruments’ VelociTI architec-
ture[38] attributes more than 50% of energy consumption to instruction fetch and
decoding activity[6]. Though, the exact percentage may depend on the architecture
and circuit details, earlier studies clearly indicate that 20% to 25% of the leakage
power consumption in a VLIW architecture is attributed to instruction decoder. In-
struction decoder is also a well known hotspot in VLIW chips and an aggressive
power optimization for instruction decoder is important from that perspective as
well[29].

The register file is another major source of power consumption in microproces-
sors[3][16][37]. For example, in Motorola M.CORE architecture[37], the register
file consumes 16% of total processor power which is as high as 40% of the total
datapath power[16]. In the context of embedded applications, register file power
consumption is even higher and is shown to be up to 25% of the total processor
power[3]. This huge power dissipation in a relatively small area occupied by the
register file leads to significantly higher power densities. The register file has been
clearly observed as a hot-spot in many studies with the temperature rising as high

2

as 115 � C[29]. The impact of such a high power dissipation in a register file is
visible in many ways. It severely impacts the mean time to failures, necessitates
the need for sophisticated cooling and packaging techniques such as liquid cool-
ing, fan mounted heat sinks etc., and impacts performance because of the need to
cool-down periodically[29].

The traditional monolithic design of instruction decoder inhibits the leakage power
management in instruction decoder. As a result, earlier work only focused on leak-
age power management for functional units mostly at a coarser granularity of loop
level or block level[21]. However, the rising level of leakage power in current and
future process technologies requires aggressive leakage power management even
for short idle periods. In this paper, we consider a split instruction decoder design
that enables the use of a hardware based scheme such as [9] for leakage power
savings in instruction decoder. We also propose a scheduling algorithm in the con-
text of VLIW and clustered VLIW architectures. Whereas, the purely hardware
based scheme suffers from the problem of a limited program view, a compiler can
analyze whole program regions and is capable of adjusting the number of oper-
ations decoded every cycle while maintaining the desired performance. The pro-
posed scheme exploits the scheduling slacks of the instructions to maximize the
simultaneous idle time and usage of decoders, thereby significantly reducing spu-
rious transitions and hence improving the power savings over those obtained by
a purely hardware based scheme. Moreover, since the proposed scheme keeps a
limited number of decoders active and uses them as much as possible, it gener-
ates a more balanced schedule which helps to reduce the peak power and the step
power[42] in instruction decoders.

In the context of a register file, though clustered architectures help to reduce the
complexity of register files by reducing the number of ports, the number of register
accesses in these architectures increases significantly because of the need for ex-
plicit inter-cluster communications. Thus, the power benefits obtained by clustering
a VLIW architecture are annulled because of power penalty due to extra accesses.
The other side effects of explicit inter-cluster move instructions are extra resource
usage (such as execution slot, inter-cluster communication channel, and functional
unit) as well as increased register pressure due to new live ranges. This increased
contention for resources also affects performance by increasing the execution cy-
cles. The increase in execution cycles in turn increases the energy consumption
because of more leakage. Register snooping based clustered VLIW architectures
provide very limited but very fast way of inter-cluster communication by allowing
some of the functional units to directly read some of the operands from the register
file of some of the other clusters. In this paper, we propose instruction scheduling
algorithms that exploit such a limited register snooping capability to significantly
reduce the register file energy consumption and to achieve better performance. It
is important to note that the sort of limited register snooping capability has been
proved useful in practice to gain performance close to the a flat architecture while
gaining the clock speed benefit of completely clustered architectures. These archi-

3

tectures stand in between completely clustered architectures and flat architectures
and offer a good architectural trade-off in terms of gaining clock speed while pro-
viding limited connectivity. It is important to mention that this is not same as having
large number of register ports as the direct connectivity is provided in a very lim-
ited form as explained earlier � . The benefit of this style of limited connectivity has
been realized in one of the well known commercial clustered architecture[38].

The rest of the paper is organized as follows. Section 2 presents the motivation
and scheduling algorithms for power optimization in instruction decoder. Section 3
presents the motivation and scheduling algorithms for power optimization in reg-
ister file. Section 4 presents our experimental setup, performance results, and a
detailed analysis of results. Section 5 presents the related work. We conclude in
section 6. Appendix A presents a formal description of cluster scheduling problem.

2 Power Optimization in Instruction Decoder

Earlier work in the context of leakage power management has mostly focused on
functional units. The techniques proposed earlier are mostly at a coarser granular-
ity of loop level or block level[21]. However, the rising level of leakage power in
current and future process technologies requires aggressive leakage power man-
agement even for short idle periods. One such purely hardware based scheme for
reducing leakage power in functional units in the context of a superscalar architec-
ture is due to Albonesi et al.[9]. Their scheme utilizes the unique characteristics
of dual-threshold domino logic with sleep mode that can transition between ac-
tive mode and sleep mode without any performance penalty[24]. However, such
a fast transition incurs moderate amount of energy penalty. Their scheme called
’MaxSleep’ puts any integer ALU into low leakage mode after one cycle of idle-
ness. Their results confirm the benefits of such an aggressive scheme. However,
being a purely hardware based scheme, the benefits are severely (on average, by
30%) affected by frequent transitions from active mode to sleep mode and vice-
versa because of many short idle periods.

The traditional monolithic design of instruction decoder inhibit the leakage power
management. In this paper, we consider a split instruction decoder design that en-
ables the use of a hardware based scheme such as [9] for leakage power savings in
instruction decoder. Figure 6 presents the power savings obtained by ’MaxSleep’,
power savings obtained by a ’NoOverhead’ scheme which is a hypothetical scheme
(same as ’MaxSleep’) but does not incur any transition power overheads and %
power overhead of ’MaxSleep’ due to transitions as compared to that of ’NoOver-
head’ scheme for a split instruction decoder design (that provides facility to de-

� In the rest of the paper, we refer to register snooping as the sort of limited free of cost
cross-cluster register read capability provided by architecture as described here.

4

Fig. 1. % Savings for ’MaxSleep’ and ’NoOverhead’ Policies

I11 I12

 Instruction Alignment and Decoding

Decoder Signals

I21 I23I22 NOP

Monolithic Decoder Design

D1 D2 D3 D5D4 D6

I11 I12 NOP;

Active Sleep

I21 I22 I23

Transition

 Execute Packet Extraction and Instruction Alignment

Split Decoder Design

0 1 1 0 01

Fig. 2. (a)Traditional Monolithic Decoder Design (b) Split Decoder Design

code up to six instructions in parallel) for a 2-cluster configuration. These results
clearly indicate that the ’NoOverhead’ scheme is able to achieve an average sav-
ings of 56.86% in total power, whereas the average savings for ’MaxSleep’ is only
38.92%. ’MaxSleep’ has an average energy overhead of 29.37% (due to transi-
tions) as compared to the ’NoOverhead’ scheme. Thus, reducing the number of
transitions will increase the idleness duration for decoders and improves the total
power benefits of a hardware based scheme. Motivated by this, we have developed
a scheduling algorithm in the context of VLIW and clustered VLIW architectures.
Whereas the purely hardware based scheme suffers from the problem of a limited
program view, a compiler can analyze whole program regions and is capable of
adjusting the operations decoded every cycle while maintaining the desired per-
formance. The proposed scheme exploits the scheduling slacks of the instructions
to maximize the simultaneous idle time and usage of decoders, thereby reducing
the number of transitions drastically. This reduction in the number of transitions
leads to significant improvements in total power savings over those obtained by
a purely hardware based scheme. Moreover, since the proposed scheme keeps a
limited number of decoder active and use them as much as possible, it generates a
more balanced schedule which helps to reduce the peak power (maximum power
dissipated in a cycle) and the step power (cycle to cycle variation in power)[42] in
instruction decoder.

5

2.1 Split Decoder Design

Decoding activity involves dividing a fetch packet into execute packets and then
decoding individual micro-instructions in each execute-packet to issue signals. A
parallel-bit is dedicated in a VLIW micro-instruction that specifies whether the next
micro-instruction is in the same execute-packet (i.e., executes in the same cycle) or
starts a new execute-packet. A traditional monolithic design of instruction decoder
as shown in Figure 2 (a) inhibits any fine grained control for hibernating parts of
the decoder circuit that are idle. A decoder circuit can be easily pipelined and split
as shown in Figure 2 (b). This provides the benefits of ease of design and verifica-
tion of circuit and performance benefits of pipelining[23] and also enables leakage
power savings at the granularity of individual decoders. The performance benefits
of pipelining the decode stage have already been identified and such a design is
in use in many high performance commercial DSPs including the Texas Instru-
ments’ VelociTI[38]. However, the novelty of our approach lies in capitalizing on
the power management capability of such a design as follows.

Due to variations in the ILP of the programs, the full issue width of the processor is
rarely utilized continuously and hence several decoder will be idle most of the time.
The split decoder design can leverage the capabilities of dual-threshold domino
logic for fast transition from active mode to sleep mode and vice versa in less than
a cycle (as used in [9] for functional units) to save tremendous amount of leakage
power in mostly idle decoder circuit. However, in order to avoid the explicit penalty
of activating a sleeping decoder, it is required to issue the activating signal one
cycle in advance. Fortunately, the parallel-bit that specifies the parallel instructions
in the current execute-packet can be used to drive the activation signal (see Figure
2 (b)). To avoid introducing any new hardware, in our machine model, we always
keep first decoder active, and use the parallel-bits in execute packet to drive the
active signal for the required number of decoders. It is important to note that these
signals are activated during the first stage of decoding when the execute packet is
being extracted and aligned from the fetch packet. Thus, by the time the micro-
instructions reach stage two for actual decoding, the required number of decoders
are in active state to perform the decoding.

2.2 The Scheduling Algorithm

The Elcor backend of the Trimaran infrastructure has a cycle scheduling algorithm
designed and implemented for flat VLIW architectures. We have modified this algo-
rithm to perform leakage power optimization for VLIW as well as clustered VLIW
architectures. The scheduler controls the assignment of instructions to clusters so
as to maximize the usage of active decode units and to keep the idle decode units
idle as long as possible. The decode units in sleep mode are explicitly activated

6

Algorithm 1 The Main Scheduling Loop
if (Scheduling for a clustered configuration) then������������������������ �"!$#&%�' �end if
Initialize ReadyList with root operations of the dependence graph of the region to be scheduled(���	�)��#��*(+,�-���.'0/
while (ReadyList is not empty) do

Initialize EarlyCycle with CurrentCycle, and LateCycle with SchedulingCycle determined using performance driven
scheduling����12�-3547681����	(+2�����:9<;=1>�	��+,(+,�-���
while (Not all operations in ReadyList have been tried once) do? (���	�)��#��*@BA ���)1��C!CDE#F�G'�H:#I�J�-���E��6K!C���ML A�DMA ?CN*NO �������	#I1��C!$P>�E6J!����J'RQ5�������	ST!$#I�E�J�-���E�)� �"!$#&% O �"�����E#I1��C!$P>�	� ? (���	�	�)��#&�*@BA����)1��C!CDE#JUV������-���������-� ���)���"!$#�% N

if (W ��;=SXAY�C+ ? O �"�����E#I1��C!$P>�E6K!C���) then
CONTINUE

end ifZ 1��	%>���*��"�&�-������'0/�KH�[�;\�K�]'0^ O 6_��;
if (ClusterScheduling) thenZ 1>�E%2���*������-�����['RQ5�������	ST!$#&�	`[�	�-�*������������ ? (� �E�)��#��*@GA����)1>�C!$DE# NO �"�����E#I1��C!$P>�E6K!C���K'RQ5�������	Sa!b#I�	���-���E�)� ��!$#�% O �"�����	#&1>�C!$P>�E� ? (� �E�)��#��*@GA����)1>�C!$DE#KU Z 1��	%>���*��"��������� N
end if(���	�)��#&� O �������	#I1��C!$P>��' O �������	#I1��C!$P>�E6J!����ML ��DMA ?$N
if
Q5�E�-D	����� O �c�C!$P>� ? Z 1>�	%>���*������������	L ������-����� N

then
Schedule CurrentOperation using CurrentAlternative in CurrentCycle on TargetCluster.Cluster using TargetClus-
ter.CommOption�KH�[�;X�J�J�]' Z(d H(;

end if
if (e �KH�[�;\�K�a1>#&�X����12�-3Tfg�J6 O [h Z(iad ;\� i @[6_Q N

then^[1>�j�j`[12�-3 O �������	#I1��C!$P>��' O �������	#I1��C!$P>�E6J!����ML ��DMA ?$N
Schedule CurrentOperation using FallBackAlternative in CurrentCycle on TargetCluster.Cluster using Target-
Cluster.CommOption

else
ReadyList.add(CurrentOperation)

end if
end while(� �E�)��#��*(+,�-���('R(���	�)��#&�*(+2�-�j�Kk �d �E1>�)+,6J!����ML �>A���1>��� ?CN�2A���1����E^\H��F��1>�C��� ?$N

end while

only if not doing so impacts the performance. This ensures that decoder energy
consumption because of spurious transitions from sleep mode to active mode and
vice-versa is reduced. We follow an integrated approach[19][32] to cluster schedul-
ing that makes the cluster assignment decision during temporal scheduling. This is
in contrast to phase-decoupled approaches[8][25] which perform cluster assign-
ment prior to temporal scheduling and are known to suffer from phase ordering
problem[19][31]. Though, we follow an integrated approach, it is important to note
that the proposed energy management scheme can be applied to gain benefits dur-
ing temporal scheduling even if a phase decoupled scheme is used for spatial and
temporal scheduling. Our integrated scheduling algorithm (Refer Algorithm 1) for
leakage power optimization consists of the three main steps described as follows.
Section 2.4 presents an example that illustrates the functioning of the algorithm in
detail.

7

Procedure 2 DetermineBestCluster^�!$���-� Z 1��	%>���ML ��"����������'l9 �^�!$���-� Z 1��	%>���ML �D�SaSm�D)���J' � /)/)/)/)/)/ ;�J���-DE#I� Z 1>�E%2���ML ������-�����('l9 ��J���-DE#I� Z 1>�E%2���ML �DESTS]�D)�-�J' � /)/)/)/)/)/for (CurrentCluster ranging from FirstCluster through LastCluster) do
Compute the Cross-path Requirements in CurrentCommOption
Compute the Communication Cost in CurrentCommCost
if (FU and Cross-paths required by CurrentOperation are available in CurrentCycle for CurrentCluster) then

if (DecoderActive(CurrentCluster) and FirstTarget.cost n CurrentCommCost) then^�!$���-� Z 1>�	%>���ML �DESaSm�D)�-�J'R(� �E�)��#��*�DESaSm�D)�-�^�!$���-� Z 1>�	%>���ML �DESaSm@BAY�C!CDE#m'R(� �E�)��#��*�DESaSm@BAY�C!CDE#^�!$���-� Z 1>�	%>���ML �������������'R(���	�	��#&�*��"���������
else

if (
���E�-DE#&� Z 1��	%>���ML �-D)�-� n �c���	�)��#��*�DESTS]�D)�-�

) then�J���-DE#I� Z 1>�E%2���ML �DESTS]�D)�-�J'R(���	�)��#��*�DESTS]�D)�-��J���-DE#I� Z 1>�E%2���ML �DESTS]@BAY�C!CDE#m'�(� �E�)��#��*�DESaSm@BAY�C!CDE#�J���-DE#I� Z 1>�E%2���ML ������-�����('o(���	�	��#&�*��"���������
end if

end if
end if

end for
if (
^�!$���-� Z 1>�	%>���ML ���"��������� e 4p9 �) then
RETURN

^�!b����� Z 1��	%>���
else

RETURN
���E�-DE#&� Z 1��	%>���

end if

2.2.1 Prioritizing the Ready Instructions

Instructions in the ReadyList are prioritized using a priority function that uses the
instruction slack and the number of consumers of the instruction. Scheduling slack
of an instruction is defined as the difference between the earliest start time and the
latest finish time of the instruction. Instructions with less slack should be scheduled
early and are given higher priority over instructions with more slack to avoid unnec-
essary stretching of the schedule. Instructions with the same slack values are further
ordered in the decreasing order of the number of consumers. An instruction with
a large number of successors is more constrained in the sense that its spatial and
temporal placement affects scheduling of more number of instructions and hence
should be given higher priority. Giving preference to an instruction with many de-
pendent instructions also enables better future scheduling decisions by uncovering
a larger portion of the graph.

Traditionally, slack is determined statically during dependence graph analysis be-
fore the scheduling begins, assuming a machine with infinite resources of each
type. We quantify the slack of instructions while scheduling a region for the spe-
cific target machine by taking resource constraints into account. We first schedule
the instruction using a simple cycle-by-cycle scheduler. The schedule time of the in-
structions is stored during this phase. In the second phase, this schedule time (Late
cycle) is used to determine the slack of the instruction. In our implementation, slack
is dynamically updated for all the operations in the ready list after every cycle. The
earliest schedule time of an instruction is set to the current cycle, before scheduling
for the current cycle begins (Early cycle). The slack is then determined as a dif-
ference of the Early cycle and the Late cycle. The dynamic update of slack after

8

each cycle ensures that any consumed slack is taken into account while scheduling
instructions in the future cycles.

2.2.2 Cluster Assignment

Once an instruction has been selected for scheduling, we make a cluster assignment
decision. The primary constraints are :

q The chosen cluster should have at least one free resource of the type needed to
perform this operationq Given the bandwidth of the channels among clusters and their usage, it should be
possible to satisfy the communication needs of the operands of this instruction
on the cluster by scheduling these communications in the earlier cycles (so that
operands are available at the right time).

Note that if we are scheduling for a plain VLIW architecture with no clustering,
we assume that there is only one cluster (numbered 0) that is holding all the re-
sources and the same algorithm is used. Selection of a cluster from the set of the
feasible clusters is done as follows. A cluster with an active decoder to schedule
the operation is given preference. If no such cluster is available or more than one
such cluster is available, the one which reduces the communication cost gets pref-
erence. The communication cost is computed by determining the number and type
of communications needed by a binding in the earlier cycles as well as the com-
munication that will happen in the future. Future communications are determined
by considering the successors of this instruction which have one of their parents
bound on a cluster different from the cluster under consideration. This is due to the
fact that if the instruction is bound to the cluster under consideration, it will surely
lead to communication(s) in the future while scheduling the successors of the in-
structions. Although, we have experimented with many other heuristics for cluster
assignment, the above mentioned heuristic seems to generate the best schedule in
almost all cases[31].

2.2.3 Instruction Binding

A instruction binding scheme decides to bind or defer the chosen instruction to the
selected cluster. The algorithm maintains a decoder map that explicitly keeps track
of the status of each decode unit. A decode unit is marked to be in sleep mode after
one cycle of idleness and is marked as activated on next use. If a decode unit is
active in the target cluster, the instruction is bound to that cluster. Otherwise, the
available slack of the instruction is considered. If the slack is below a threshold (we
use the threshold value of 0 in our experiment), the instruction is bound anyway and
the extra decoder unit required by the instruction is automatically woken up during
execution. In case the instruction possesses enough slack, its scheduling is deferred
to a future cycle and it is put back in the ReadyList. Note that the next time this

9

Fig. 3. An Example Data Dependency Graph

Fig. 4. (a) Schedule 1 (b) Schedule 2 (c) Schedule 3 (d) Schedule 4

instruction is picked up for scheduling, its earliest scheduling time and hence the
slack get updated. This guarantees that the slack of an instruction reduces monoton-
ically and eventually goes below the threshold ensuring that it is scheduled. Hence
the algorithm is guaranteed to terminate.

2.2.4 An Example

We now present an example to illustrate how the proposed scheduling algorithm
gets power benefits without hurting performance. Figure 3 shows a data dependency
graph and Figure 4 shows some schedules. Schedules 1 and 2 are for a plain VLIW
architecture having two adders, two multipliers, and 4 decoders. We assume that the
latency of an add operation is one cycle and the latency of a multiply operation is
two cycles. Schedule 1 is generated by a traditional performance-oriented scheduler
which schedules the instructions as early as possible and uses the slack value of
instructions to break any contentions for resources and the total schedule length is
8 cycles. Total number of transition for Scheduler 1 are 3 as decoder D4, D3 and D2
each incur one transition in cycle 3, 4 and 5 respectively after idleness of 1 cycle.

Our energy efficient scheduler realizes the criticality of MPY operations and avail-
able slack for ADD operations and schedules the same data dependence graph as
shown in schedule 2. Since deferring the execution of any MPY operation leads to
stretching of schedules, they are scheduled in the same way as in the performance-
oriented schedule 1. However, scheduling of ADD operations is delayed as well
as serialized, exploiting the available slack of add operations. Notably, the sched-
uler determines the slack value available in scheduling an operation by first doing
a performance-oriented scheduling pass on data-dependence graph and uses the es-
timate of schedule length from this pass to calculate the exact slack value available

10

in scheduling an instruction which is used to generate the schedule for energy ef-
ficiency. Schedule 2 uses only two decoders and incurs only one transition for D2
in cycle 7. Schedule 2 is also more balanced as compared to schedule 1 in terms of
resource usage. The resource usage vector of the first schedule is (4,3,2,0,1,0,1,0)
and that of second is (2,2,2,2,2,0,1,0). Thus cycle to cycle variation in resource us-
age is clearly reduced in schedule 2 as compared to schedule 1, which in turn helps
in reducing step power and peak power dissipation[42]. Thus, it is clear that the
proposed scheme is capable of reducing total leakage power consumption, transi-
tion energy overheads, as well as peak power and step power dissipation without
affecting the performance.

Consider schedules 3 and 4 generated for a 2-clustered VLIW architecture (equiv-
alent to above mentioned VLIW architecture) having 1 adder and 1 multiplier in
each cluster and a bidirectional bus between the two clusters with 1 cycle transfer
latency. Schedule 3 is generated by a performance-oriented scheduler. The extra
delay of inter-cluster communication stretches the schedule from 8 cycles to 9 cy-
cles as compared to the schedule 1. Again the total number of decoder transitions
are 3.

Scheduling the same set of operations using our energy-efficient scheduler gener-
ates schedule 4. The major point to note is that the scheduler leverages the avail-
able slack due to inter-cluster communication to achieve the same 9-cycle sched-
ule with only two decoders and only one transition for D2 in cycle 5. Finally
schedule 4 is much more balanced : The resource usage vector of first schedule
is (4,2,1,2,0,1,0,1,0) and that of the schedule 4 is (2,2,2,1,1,1,1,1,0).

3 Power Optimization in Register File

In context of register file, though clustered architectures help to reduce the com-
plexity of register files by reducing the number of ports, the number of register
accesses in these architectures increase significantly because of the need for ex-
plicit inter-cluster communications. Figure 5 demonstrates this fact clearly. The
two add operations ADD1 and ADD2 when executed in separate clusters and one
being dependent on the result of other necessitate an inter cluster move operation
that leads to at least two extra register accesses (A3 and B1), one in each cluster.
The other side effects of explicit inter-cluster move instruction are extra resource
usage (such as execution slot, inter-cluster communication channel, and functional
unit) as well as increased register pressure due to new live ranges (for example,
live range associated with B1 in this case in cluster 2). Thus, the power benefits
obtained by clustering a VLIW architecture are annulled because of energy penalty
due to extra accesses.

11

rrr
rrr

stsstsstssts
utuutuutuutu

2
3
4
5

1

Cluster 2Cluster 1

7
6

ADD1 A1, A2, A3

ADD2 B1, B2 B3
ADD3 A4, B3, A5 (B3 snooped)

MV A3, B1 (Explicit MV)
(Extra Cycle and Resources for MV)

(New Live Range)

Fig. 5. Side Effects of Explicit Inter-Cluster Move operation

3.1 Motivation

Register snooping based clustered VLIW architecture such as [38] allows some of
the functional units to read some of the operand from the register file of some of
the other clusters directly without any extra delay by providing limited multiplexed
cross-cluster register paths. Register snooping facility enables the immediate con-
sumption of the value read from the source cluster and thus does not introduce
new live ranges, extra register access, and resource usage (For example, register
snooping facility as used in case of ADD3 in Figure 1 to read B3 from cluster 2).
However, traditional cluster scheduling algorithms that are based on greedy heuris-
tics such as scheduling an instruction as early as possible[19] lead to excessive
inter-cluster communication on such an architecture. This in turn impacts perfor-
mance because of the extra resource requirements of executing inter-cluster move
instructions as well as the increase in the register pressure. The longer execution
time in turn increases the overall system energy consumption. Some of the earlier
heuristics[32] that are solely based on minimizing the communication suffer from
high performance degradation on register snooping based clustered VLIW archi-
tectures. Figure 6 gives the quantitative results to support this argument. Figure 6
presents the percentage distribution of explicit inter-cluster move instructions w.r.t
total number of instruction for a 2-clustered and a 4-clustered machine that supports
two snoops or explicit move (one in each direction) between all pairs of neighbor-
ing clusters. The scheduling has been done using a greedy scheduling algorithm
(called Greedy here onwards) similar to [19] but slightly modified to take benefits
of register snooping capabilities wherever possible while retaining the core cluster
assignment policy (Refer Algorithm 3 for an outline). The algorithm is a modi-
fied version of the list scheduling algorithm that considers instructions from the
ReadyList based on priority and schedule them on a cluster that can execute the in-
structions at the earliest irrespective of inter-cluster communication that is incurred
in the current and future cycles. This algorithm represents the state-of-the-art in
cluster scheduling for clustered architectures without register snooping capabili-
ties. However, it is clear that inter-cluster moves constitute a significant fraction of
the overall instructions. This is clear from Figure 6 as the percentage of inter-cluster

12

Fig. 6. % Distribution of Explicit Inter-Cluster move w.r.t Total Instructions

move is as high as 24% for a 2-clustered machine and 37% for a 4-clustered ma-
chine. On average the percentage of inter-cluster move instructions with respect to
other instructions is 18.3% and 27.7% for a 2-clustered and a 4-clustered machine
respectively. As mentioned earlier, each of these extra inter-cluster move engages
resources (such as execution slot, inter-cluster communication channel, functional
unit) and it creates extra register accesses and new live ranges. This leads to per-
formance degradation. We observe that the cycle count increases by 15% and 23%
with respect to a hypothetical BASE architecture having the same number of re-
sources in a single cluster. Extra inter-cluster move instructions also explicitly in-
crease the code size.

The large number of inter-cluster move instructions can be reduced if the regis-
ter snooping capability of clustered VLIW architectures is harnessed properly. A
scheduler can leverage the benefits of snooping by scheduling operations among
clusters in such a way that the free ICC facility can be utilized to the maximum
possible extent. This demands spreading the computation among clusters in such a
way that most of the communication can be accommodated using free-of-cost com-
munication facility without compromising the available ILP in the application and
requiring explicit move operations only rarely. This demands not only reducing the
requisite communication in the cycle under consideration but also taking care of the
communication requirements that may arise in the future. This will help not only to
reduce the performance overhead due to excessive inter-cluster communication but
also the significant power savings in register files by eliminating extraneous access.
In what follows, we propose two such scheduling algorithms. The first algorithm
called Simple tries to schedule instruction in a priority manner but instead of try-
ing to reduce the inter-cluster communication, it rather uses the register snooping
capability as much as possible and minimizes the need for explicit inter-cluster
communication. This algorithm gives reasonably good saving in register file power
as compared to algorithm Greedy with significant performance improvements. The
second algorithm, Aggressive utilizes the scheduling slack of instructions to selec-
tively defer their execution in order to use register snooping capability over explicit
inter-cluster move. Aggressive improves the performance over Simple marginally
but further reduces the register file power significantly.

13

3.2 The Scheduling Algorithms

We have modified the cycle scheduling algorithm in Elcor backend of the Trimaran
infrastructure[1] to do cluster scheduling in an integrated fashion using different
heuristics (Greedy, Simple, and Aggressive). The selection of a feasible cluster for
binding an instruction in a cycle is done based on the same feasibility constraints as
described earlier in section 2.2.2. The algorithms differ in selection of an instruc-
tion from the ReadyList, selection of the target cluster for binding instruction from
set of feasible clusters, and the decision mechanism to defer an instruction for con-
sideration in future cycles. In what follows, we describe the specific functioning of
each of these three algorithms in detail.

Algorithm 3 Out Line of the Scheduling Algorithm Greedy
Determined EarlyCycle, LateCycle and Slack for each instruction in the Depen-
dence Graph
Initialize ReadyList with root operations of the dependence graph of the region
to be scheduledvxw=yJy8zI{\|>vx}:~ ��z�� �
while (ReadyList is not empty) do

while (Not all operations in ReadyList have been tried once) do� v�w=yKyKzI{X|>�g�=zIyK�B|��E�J{5��� �7{���~&�[zF�G���)�&|�� �=��� �E�,�
� �ByJ�:z&|>vx�-wX�&|>zIy�� ��z&|>zIyJ���E{5zF�p�By8�c�	z��&|>vx�cw��&|>zIy � v�w=yKyKzI{X|>�g�=zIy8�_|��E�J{ �
Schedule CurrentOperation in CurrentCycle on TargetCluster.Cluster using
TargetCluster.CommOption

end whilev�w\yJyKzI{X|>v�}(~ �-z�� vxw=yJy8zI{\|>vx}:~ ��z�� �
¡ zF�G�B}(���)�&|���wB�=�G�B|>z ���

end while

3.2.1 Algorithm Greedy

Algorithm Greedy presented here (Refer Algorithm 3 for an outline) is a slightly
modified version of the one presented in [19] that extends the traditional list schedul-
ing algorithm for cluster scheduling. This algorithm selects instructions in the ReadyList
in decreasing order of priority. Priority of an instruction is determined based on
instruction slack. Slack in this case is calculated as a difference between earliest
possible schedule time and latest possible schedule time for an infinite resource
machine. The selected instruction is greedily assigned to the cluster where it can be
executed at the earliest irrespective of any communication that happened in earlier
cycles as well as those that will happen in future cycles (as a side effect of this
binding). However, in our implementation of Greedy, in order to ensure a fair com-
parison, we use the register snooping facility to read the operands (wherever possi-
ble) from other clusters subject to the core cluster assignment policy (as described
above) of Greedy. Explicit inter-cluster communication instructions are scheduled

14

in earlier cycles for all inter-cluster communications that can not be accommodate
using the available register snooping facility in the current cycle.

3.2.2 Algorithm Simple

Algorithm Simple (Refer Algorithm 4 for an outline) tries to schedule the instruc-
tions in a manner such that the register snooping capability is used to the maximum
extent and explicit inter-cluster communication is minimized. An instruction is se-
lected from ReadyList based on a two component ordering function. The two com-
ponents of the ordering function are instruction slack and number of consumers.
Slack is calculated in the same as in Algorithm Greedy. The instructions with less
slack are scheduled early and are given priority over instructions with more slack
in order to avoid unnecessary stretching of the schedule. Among instructions with
the same slack values, the one with more number of successors is scheduled early
because it has more constraints and its scheduling impacts spatial and temporal
placement of a larger number of instructions. Once an instruction has been selected
from the ReadyList, the selection of a cluster from the set of feasible clusters is
done according to the following heuristic. Unlike Greedy that simply assigns an
instruction to a cluster that can execute the instruction at the earliest, Simple deter-
mines the average communication cost per transfer for each cluster by taking into
account the communication required in earlier cycles, current cycle as well as com-
munication required in future cycles as a side effect of a binding. The instruction
is finally assigned to that cluster which can execute the instruction at the earliest
but with the minimal average communication cost. Specifically, the average com-
munication cost of a binding is calculated according to communication cost metric
given in Equation 1.

�B¢G� ~ �J��� ~ �8�&|�£ ��¤¦¥ ~ w=yJy8zI{\| ~������§�©¨ ¥gª w[|�w=yKz
~ �J���«�¬v ¥ z&B�=�c�	~���| ��¢ �,® |>�F|>�G� {Xw\� ~ �J��� (1)

In Equation 1 explicit mv takes care of communications that can be due to non-
availability of snooping facility in a particular cycle (because of cross-path satu-
ration). Only those clusters which have enough communication slots and required
resources for scheduling a move instruction in the earlier cycles are considered.
current comm is determined by the number of operands that reside on a cluster
other than the cluster under consideration and can be snooped using the register
snooping facility available in the current cycle. future comm is determined by con-
sidering the successors of this instruction which have one of their parents bound
to a cluster different from the current one. In case some of the parents of one of
the successors are not yet bound, the calculation is done assuming that they can be
bound to any of the clusters with equal probability. The selection of A, B and C
is architecture specific and depends on available communication options in a clus-
tered architecture and their relative cost. We found that A=0.25, B=0.5 and C=1.0

15

work well in practice for an architecture that has limited register snooping facility
available (such as the one we consider) and allows at most two snoops per cycle
(one in each direction) between all pairs of neighboring clusters. In general, the val-
ues of A, B and C are tuned based on the target architecture. Since explicit mv is a
pure overhead in terms of resource requirements and register pressure, it is assigned
double the cost of the current comm to discourage these explicit moves and this fa-
vors the register snooping facility in the cost model proposed. future comm is also
assigned a smaller cost optimistically assuming that most of them will be accom-
modated in the free-of-cost communication slot. The values of different constants
can be changed to reflect the ICC model under consideration.

Algorithm 4 Out Line of the Scheduling Algorithm Simple
Determine EarlyCycle, LateCycle, Slack and NumDependent (Number of Suc-
cessor instructions) for each instruction in Dependence Graph
Initialize ReadyList with root operations of the dependence graph of the region
to be scheduledvxw=yJy8zI{\|>vx}:~ ��z�� �
while (ReadyList is not empty) do

while (Not all operations in the ReadyList have been tried once) do� v�w=yKyKzI{X|>�g�=zIyK�B|��E�J{5��� �7{���~&�[zF�G���)�&|�� �=��� �E�,�
� �ByJ�:z&|>vx�-wX�&|>zIyK�¯�	�&|¯� ��z&|>zIyK����{5z�°±��{5vx�J���²vx�cwX�I|>zIy8� � v�w=yKyKzI{X|>�g�=zIy8�_|��E�J{ �
� �ByJ�:z&|>vx�-wX�&|>zIy�� ��z&|>zIyJ���E{5zF�p�By8�c�	z��&|>vx�cw��&|>zIy8� �

v�w\yJyKzI{X|>���[zIy8�_|��	��{m³ � �By��:z&|>vp�cwX�&|>zIy8���)�&| �
Schedule CurrentOperation in CurrentCycle on TargetCluster.Cluster using
TargetCluster.CommOption

end whilev�w\yJyKzI{X|>v�}(~ �-z�� vxw=yJy8zI{\|>vx}:~ ��z�� �
¡ zF�G�B}(���)�&|���wB�=�G�B|>z ���

end while

3.2.3 Algorithm Aggressive

Algorithm Simple described in the last subsection maximizes the usage of the regis-
ter snooping facility available in architecture while minimizing the need for explicit
inter-cluster move operations. This not only helps to reduce register file power but
also improves performance significantly. However, it is still greedy to some ex-
tent because it does not defer scheduling low priority instructions (considered for
scheduling later in a cycle) that incur high communication cost. This is because,
low priority instructions use explicit inter-cluster communication as a result of sat-
uration of available register snooping facility by high priority instructions consid-
ered early in the cycle. Algorithm Aggressive (Refer Algorithm 5 for an outline)
improves over Simple by deferring these instructions for consideration in later cy-
cles. Aggressive algorithm makes the decision based on communication cost and on
available scheduling slack of instructions so that deferring instructions does not im-
pact performance by stretching the schedule. In contrast to Algorithms Greedy and

16

Algorithm 5 Out Line of the Scheduling Algorithm Aggressive
Initialize ReadyList with root operations of the dependence graph of the region
to be scheduled
Determined NumDependent (Number of Successor instructions) for each in-
struction in Dependence Graphvxw=yJy8zI{\|>vx}:~ ��z�� �
while (ReadyList is not empty) do

Initialize EarlyCycle with CurrentCycle, and LateCycle with SchedulingCycle
determined using performance driven scheduling�F�-�.~�´µ£¶�¯�B|>zFv�}:~��-z7·¸�t�By8�c}:vx}:~ ��z
while (Not all operations in ReadyList have been tried once) do� v�w=yKyKzI{X|>�g�=zIyK�B|��E�J{5��� �7{���~&�[zF�G���)�&|�� �=��� �E�,�

� �ByJ�:z&|>vx�-wX�&|>zIyK�¯�	�&|¯� ��z&|>zIyK����{5z�°±��{5vx�J���²vx�cwX�I|>zIy8� � v�w=yKyKzI{X|>�g�=zIy8�_|��E�J{ �
� �ByJ�:z&|>vx�-wX�&|>zIy�� ��z&|>zIyJ���E{5zF�p�By8�c�	z��&|>vx�cw��&|>zIy8� �

v�w\yJyKzI{X|>���[zIy8�_|��	��{m³ � �By��:z&|>vp�cwX�&|>zIy8���)�&| �
if (

���-�G~&´�¹º��� ¤ vp» �7¼0¡ �t� ¼ �t�¯� � �B{5�
(
� �By��:z&|>vp�cwX�&|>zIyJ�jvx�J���²vx�8�&|½¹ vx����� � ��yKz��J�[�J�-�

) then
ReadyList.add(CurrentOperation)

else
Schedule CurrentOperation in CurrentCycle on TargetCluster.Cluster us-
ing TargetCluster.CommOption

end if
end whilev�w\yJyKzI{X|>v�}(~ �-z�� vxw=yJy8zI{\|>vx}:~ ��z�� �
¡ zF�G�B}(���)�&|���wB�=�G�B|>z ���

end while

Simple, Algorithm Aggressive depends upon realistic calculation of slack to be able
to be able avoid the stretch of schedule as well as exploiting the opportunities to
avoid explicit inter-cluster communication. Thus, in this case slack is determined
taking into account the resource constraint on the real machine and updated dy-
namically in the same way as explained earlier (Refer section 3.2.1 for the realistic
calculation and update of slack).

Algorithm Aggressive selects an instruction from the ReadyList based on the above
determined dynamic slack and the number of consumers. After the instruction is
selected from ReadyList, a set of feasible clusters for scheduling the instruction are
determined based on the above mentioned constraints. The average communication
cost of scheduling the instruction on each of the clusters is then determined and the
cluster that can schedule the instruction earlier with minimum average communi-
cation cost is considered for scheduling. However, unlike algorithm simple, instead
of binding the instructions blindly to a cluster, algorithm Aggressive takes into ac-
count the average communication cost for each communication as determined by
the cost metric explained above and the available instruction slack as calculated
and updated dynamically. If the average communication slack of the instruction is

17

above than a communication threshold (COMM THRESHOLD) and the slack of
the instruction in above a slack threshold (SLACK THRESHOLD), the schedul-
ing of the instruction is deferred by decrementing its slack and putting it back
into ReadyList. The values of SLACK THRESHOLD and COMM THRESHOLD
decide the degree of aggressiveness of the scheduler. Higher slack thresholds en-
sure that possible performance degradation because of deferring instructions is less
but at the same time this also offer only limited opportunities to defer instruc-
tions. On the other hand, low values of slack provide more opportunities for de-
ferring instructions there by scheduling them using register snooping facility as
much as possible. But too low a value of slack can also lead to instruction se-
rialization because of resource contentions and thus affect the performance. The
value of COMM THRESHOLD decides the aggressiveness of the scheduler in
terms of avoiding the inter-cluster move over the register snooping facility. Lower
the value, more will be the bias towards using register snooping facility over ex-
plicit inter-cluster communication. We have experimented with a class of sched-
ulers by changing values of COMM THRESHOLD and SLACK THRESHOLD.
We present the results (in experimental section) based on a moderate value of��� ¤ vp» �7¼0¡ �t� ¼ �t�¯�¾£«¿

and a low value of
vp�t°À° ��¼
¡ �Á� ¼ �t�¯�¾£

�bÂ_Ã
which provides a scheduler a heavy bias towards using register snooping facility

but with only limited possibility of impact on performance.

4 Experimental Evaluation

4.1 Setup

We have used the Trimaran suite for our experimentation. Trimaran was developed
to conduct state-of-the-art research in compilation techniques for ILP architectures
with a specific focus on VLIW class of architectures. We have modified the Tri-
maran suite to generate and simulate code for a variety of clustered VLIW config-
urations. The machine description module has been upgraded to describe various
clustering related parameters such as the number of clusters, number and types of
functional units in each cluster, interconnection network parameters such as number
and types of buses between different clusters, and their latency parameters. These
parameters are fed to the parameterized machine-dependent optimization modules
in the backend. Major modifications have been performed in the Trimaran scheduler
and register allocator module (which was originally written for a class of flat VLIW
architectures) to faithfully account for the conflicts due to limitations on the number
of available functional units and registers in a cluster as well as the limitations on
the number of available cross-paths between clusters. The scheduler has been mod-
ified to implement the scheduling algorithm described in the last section. We have
used twelve benchmarks out of which nine are from mediabench[26] (viz. cjpeg,
djpeg, rawcaudio, rawdaudio, g721encode, g721decode, md5, des, and idea), two

18

from netbench[15] (viz. crc, and dh), and one (susan) is from MiBench[17]. We
have tried other benchmarks from these suites as well but these are the only ones
which compiled successfully and executed correctly in the Trimaran framework
and hence we report results for them.

We present results for a 2-clustered machine and a 4-clustered VLIW machine as
compared to an equivalent hypothetical unclustered BASE VLIW machine. The
unclustered VLIW configuration has 4 ALUs, 2 load-store units, 1 branch unit,
and 64 registers. The 2-clustered configuration has 2 ALUs, 1-load store units, 1
branch unit and 32 registers in each cluster, whereas the 4-clustered configuration
has 1 ALU, 1-load store unit, 1 branch unit and 16 registers in each cluster. The
communication among data values is possible by explicit move instructions as well
as register snooping facility with a limitation of two snoops (or explicit moves) par
cycle between all pairs of neighboring clusters.

4.1.1 Energy Model

We have used the same general analytical energy model proposed in [9] for combi-
national circuits to directly compare the decoder energy benefits of our compiler-
assisted scheme over the pure hardware based scheme proposed in[9]. However,
unlike [9] that target leakage energy in functional units, we target leakage energy
savings in instruction decoder. We briefly describe this model here. The reader is
referred to [9] for details. The total energy in a decode unit is determined as fol-
lows:Ä�ÅÆ�Ç�Æ�È É £ºÊ�ËÍÌTÎ�Ï¸Ð�Ñ Ä ÌTÒGÓ�Ô[Ë��©Õ�ÒGÎ�Ö:Î�Ô=Ò Ä ÌTÒGÓ�Ô[Ë]�

× Ó�Î[ÌTØIÐ-ÙFÐ�Ú\Ì Ä ÌTÒGÓ�Ô[ËÛ�ÝÜ5Þ�ÒGÒGß Ä ÌTÒGÓ�Ô[Ë
Ä�ÅÆ�Ç�Æ�È É £ºÌTà ��á Ä à�� �>â ·ãÊ � Äåä�æ � � � ÌTà¯Ê«�¬ÌÍçaè �T¥é��á Äåê�ë � �2â · á]� Äåê	æ � �

ìÀí �2�2â · á]� Ä à0� Äéä É�î>î2ï � �¬ÌTð Äåê�ñ

Here
ÌÍà

is the number of active cycles,
ÌaçTè

is the number of uncontrolled idle
cycles,

Ìað
is the number of sleep cycles and

ìòí
is the number of transitions. We

have determined these values differently for each configuration by using the tri-
maran simulator.

Äåê�ë
and

Äåê	æ
are low leakage and high leakage energy and are

related by the following equations.

Äåê�ë £¶Ø ¥ Äéä�æ ³Yó��bó=ó=ó âõô Ø ô óÍ�jó â
and

ÄåêEæ £ºß ¥ Ä à½³Yó ô ß

Where p is the ratio of the maximum leakage energy expended to the maximum
energy for evaluation per unit of time (1 cycle). After simplifying and normalizing
the equations with respect to active energy, the following model for total energy
consumption is obtained :

Ä Æ�Ç�Æ�È É £ºÌTà ��á � �2â ·ãÊ � ß � � � ÌTà�Êö�©ÌTçTè �T¥é��á Ø�ß÷� �2â · á]� ß �
� ìøí �2�2â · á]� � Äåä É�î>î,ï ® Ä à � �¬ÌTð�Ø&ß

19

The technology parameters that we have used (s=0.01 and
� �����E�ùA ® � O £ö�:�b�(�

) are
also the same as in [9]. Considering the current 65nm fabrication technology where
leakage energy is on par with dynamic energy, we set p to 0.5.

á
is the activity

factor and D is the duty cycle of the clock. We use a typical value of 0.5 for both of
these parameters in our simulation.

To determine the energy consumption in register files, we have modified eCACTI[27]
to model a register file as a small tag free storage structure in eCACTI similar to
[33]. The register file access statistics are collected for each program and each
scheduler using Trimaran. The access statistics are used to determine the total
register file energy by multiplying it with per access energy as determined using
eCACTI[27].

4.2 Results

We have performed a detailed experimental evaluation of the proposed algorithms
in terms of energy savings and performance benefits for 2-clustered and 4-clustered
machine. These results are presented in separate subsection below. Since the contri-
bution of power consumption of any particular component to the overall processor
power consumption depends on lot of parameters such as exact configuration as
well as fabrication process and technology, we take an approach to evaluate the
relative power savings in the target component (such as decoder or register file) by
the proposed scheme. The exact benefit can be determined by scaling these ben-
efit depending on the details of the exact design. It is important to note that the
proposed techniques are opportunistic in nature and seek to exploit power bene-
fits without degrading performance. So application of these techniques does not
necessarily affect the power consumption in other components. Another important
point to note is that the development of these techniques is also motivated by the
fact that decoder and register file are well known hotspot in the processor. So the
proposed no-overhead software-only techniques are still attractive due to thermal
benefit even if the power savings achieved do not translate to huge amount of over-
all power savings at the processor level for certain configurations.

4.2.1 Decoder Power Optimization

For decoder energy savings, we present results for the ’AlwaysActive’ scheme that
doesn’t not apply any leakage energy management, the hardware-only scheme from
[9] called ’MaxSleep’ used in the context of decode units that puts a decode unit
into low leakage mode after one cycle of idleness, and our scheduling scheme called
’Optimized’ that assists the hardware based scheme by reducing undesirable tran-
sitions. The results are presented in comparison with a hypothetical scheme called
’NoOverhead’ that is the same as ’MaxSleep’ but does not incur any of the energy

20

Fig. 7. (a) % Reduction in Transitions with scheduling w.r.t. Hardware only Scheme (b) %
Increase in total energy w.r.t Hypothetical No-overhead Scheme (VLIW)

Fig. 8. % Increase in total energy w.r.t No-overhead Scheme (a) 2 Cluster (b) 4 Cluster

overheads of transitions. This scheme represents a theoretical ideal against which a
leakage energy management scheme can be compared for its effectiveness. Though
our main focus is on clustered architectures, we also present results in the context
of VLIW architectures for the sake of comparison and completeness.

Figure 7 (a) shows the percentage reduction in the number of transitions due to our
algorithm as compared to the hardware-only scheme. We observe that the number
of transitions reduce by 53%, 58.88%, and 62.74% for VLIW, 2-Clustered VLIW,
and 4-Clustered VLIW respectively. The reduction in the number of transitions
depends on the total available slack in scheduling instructions as well as the dis-
tribution of idle cycles in the benchmark. Benchmarks like des, dh, crc, and su-
san have many short idle cycles and our algorithm is able to exploit the available
slack in these applications to avoid many transitions. In the case of g721encode and
g721decode, the available slack is relatively less and consequently the reduction is
also less.

Figure 7 (b) shows the total energy overhead of ’AlwaysActive’, ’MaxSleep’ and
’Optimized’ schemes as compared to the ’NoOverhead’ scheme. ’AlwaysActive’,
’MaxSleep’ and ’Optimized’ schemes show average energy overheads of 54.33%,
27.29%, and 14.99% respectively as compared to the ’NoOverhead’ scheme. The
proposed ’Optimized’ scheme reduces the total energy overhead by 14.46% over
the ’MaxSleep’ scheme which is significant taking into account that it is a purely
software based scheme and does not incur any hardware overhead.

The benefits of our scheme are even more pronounced in the context of clustered

21

architectures. In the context of 2-clustered architecture ’AlwaysActive’,’MaxSleep’
and ’Optimized’ have average energy overheads of 56.86%, 29.37% and 14.6% re-
spectively as compared to the ’NoOverhead’ scheme (Refer Figure 9 (a)). The en-
ergy benefits of ’Optimized’ over Maxsleep is 17.3% in the context of 2 clustered
architecture. For a 4-clustered configuration, ’AlwaysActive’,’MaxSleep’, and ’Op-
timized’ incur 57.51%, 29.88%, and 13.7% overhead as compared to ’NoOver-
head’ scheme (Refer Figure 9 (b)). The ’Optimized’ scheme improves over the
’MaxSleep’ scheme on the average by 18.74% in the context of 4-clustered archi-
tectures. The reasons for more savings in the context of clustered architectures are
as follows. Clustering brings along extra contentions for a limited number of slow
cross-paths (for inter-cluster communication). This leads to many short idle cycle
for instruction decoders. A purely hardware based scheme with traditional schedul-
ing algorithm undergoes transitions for such many short idle cycles and suffers the
associated energy penalty. In contrast to the performance-oriented scheduling al-
gorithm which is designed for utilizing the resources spread over different clusters
to achieve a better performance, our energy-aware scheduling algorithm sometime
limits the spreading of operations, if it can fetch some energy benefits without hurt-
ing performance. Thus, some of the extra slack which is available while schedul-
ing for clustered architectures due to contention for inter-cluster communication
is utilized to gain energy benefits in our algorithms. Finally, our algorithm suffers
a very marginal performance loss of 0.18% in the context of VLIW architceture
as compared to performance oriented scheduler. The average performance loss in
the context of 2-clustered and 4-clustered architecture is 0.32% and 0.45% respec-
tively. The reason for this performance loss is inherent inaccuracies in determining
the available slack. Due to this, slack is sometime over-estimated which in certain
cases lead to performance penalty due to serialization of operations. However, our
results clearly show that it is rare and its overall effect on performance is negligible.
This is because our algorithm is conservative in exploiting slack to save energy.

4.2.2 Register Power Optimization

Register file energy savings and performance improvement of Simple and Aggres-
sive are presented with respect to Greedy for a 2-clustered and a 4-clustered ma-
chine.

Figure 9 (a) and Figure 9 (b) show the percentage energy savings of Simple and
Aggressive as compared to Greedy for a 2-Clustered and a 4-Clustered machine
respectively. We observe that Simple and Aggressive obtain energy savings of up to
9% and 16% over Greedy for 2-clustered machine. The average energy savings of
Simple and Aggressive over Greedy are 6.85% and 11.90% for 2-Clustered VLIW
machine. The benefits of Simple and Aggressive over Greedy are up to 14% and
20% with the average being 10.39% and 17.78% for 4-Clustered VLIW machine.
The benefits are clearly high for 4-clustered machine as compared to 2-clustered
machine because of higher number of explicit moves in 4-clustered machine (as can

22

Fig. 9. % Register File Energy Savings w.r.t Greedy Scheme (a) 2 Cluster (b) 4 Cluster

Fig. 10. % Speedup w.r.t. ’Greedy’ Algorithm (a) 2 Cluster (b) 4 Cluster

be seen in Figure 6) that could be effectively converted to snoops by our algorithm
using greater degree of register snooping available in 4-clustered architecture. The
benefit among benchmarks depends on the percentage of explicit inter-cluster move
instruction and available scheduling slack of instruction in a benchmark. Bench-
marks such as dh, md5 and g721-decode obtain more savings in register file energy
which can be attributed to a higher fraction of inter-cluster move instructions in
these benchmarks as well as a good amount of available scheduling slack in in-
structions. However, it is clear that all the benchmarks benefit significantly in terms
of register file power. An important point to note is that Aggressive gives more ben-
efit in the context of a 4-clustered machine as compared to Simple which implies the
need for aggressively exploiting the slack for highly clustered architectures in order
to reap power as well as performance benefits (as is described in next paragraph).

Figure 10 (a) and Figure 10 (b) show the percentage reduction in execution time of
different algorithm Simple and Aggressive over Greedy Algorithm. Simple and Ag-
gressive obtains performance benefits of 4.81% and 5.34% as compared to Greedy
for a 2-clustered machine. The performance improvement of Simple and Aggressive
is 9.39% and 11.16% as compared to Greedy in the context of 4-clustered archi-
tectures. The performance benefit due to reduction of inter-cluster move is due to
many reasons. The resource contentions (for functional units and inter-cluster path)
is reduced as well as the extra slot used by an inter-cluster move can be utilized to
schedule regular instructions. Again the benefit is clearly much more in the context
of a 4-clustered architecture because of more number of moves that get converted
into snoops by the proposed scheduling algorithms. A salient feature of the pro-
posed scheme is that it simultaneously provides energy and performance benefit
rather than gaining energy benefit at the cost of performance degradation.

23

4.3 Combined Algorithm

Our early experimental observations demonstrate that the algorithms for decoder
power saving and register file power savings can be combined into an integrated
algorithm in a profitable manner. This is because both the algorithms are oppor-
tunistic in nature with regard to exploiting slack to save power without affecting
performance. Though, it is clear that the combination of two algorithms do not
interfere negatively with each other, the overall benefit obtained is limited by the
total available slack. We have seen instances where combined algorithm provides
roughly the same performs as the individual algorithm. However, there are also in-
stances where using one takes away available opportunities for other thereby the
benefit are not additive when applied together (as explained above).

Combining decoder power saving algorithm with that of functional unit power sav-
ing algorithm is relatively simpler. This is because goal of both the algorithms is
to reduce unnecessary transitions and increase the average idleness duration. In
fact uniformity of decoders makes it easier and less conflicting to integrate decoder
power saving heuristic with that of functional unit power saving heuristic. How-
ever, we do not venture into integration of multiple heuristics because focus of this
paper is more on saving power in two of the important hots-pots of the chip namely
decoder and register file.

5 Related Work

Earlier proposals for scheduling on clustered VLIW architectures can be classified
into two main categories, viz., phase-decoupled approaches and phase-coupled ap-
proaches. A phase-decoupled approach to scheduling works on a data flow graph
(DFG) and performs partitioning of instructions into clusters to reduce inter-cluster
communication while approximately balancing the load among clusters. The an-
notated DFG is then scheduled using a traditional list scheduler while adhering to
earlier spatial decisions[8][5]. An integrated approach to scheduling combats the
phase-ordering problem by combining spatial and temporal scheduling decisions
in a single phase [19] [31][30].

Study of leakage energy management at the architectural level has mostly focused
on storage structure such as cache[13]. Some of the earlier work has targeted energy
efficiency in functional units. [9] proposes an architectural policy for aggressively
controlling leakage energy in integer ALUs. However the overhead of transitions
from active mode into low-leakage mode and vice-versa are significant. Zhang
et al.[43] have proposed a rescheduling scheme to reduce dynamic and leakage
energy in the functional units of a VLIW processor. The dynamic energy saving
scheme proposed by [43] depends upon multiple implementation of same function-

24

ality such as simple adder and carry look ahead adder for addition. This scheme
tries to achieve the leakage power savings in functions units by applying energy
aware scheduling to code that is already scheduled and resource allocated by a per-
formance oriented scheduler. It is important to note that this leaves only a remnant
slack from a performance oriented heuristic for an energy oriented heuristic to gain
only limited energy savings. In contrast, our scheme is to perform performance and
energy efficient scheduling in an integrated phase on an unscheduled code thereby
use the knowledge about total available slack to meet performance requirement
while saving energy. Our early experiments showed that such an approach generate
better energy savings than an approach used in [43].

Kim et al.[21] have proposed a leakage energy management scheme for VLIW pro-
cessors that approximates the ILP available in the program using heuristics (as the
exact estimation problem is itself NP complete). Gupta et al.,[35] propose a novel
data structure called power-aware flow graph. Their leakage energy management
scheme in the context of superscalar processors works over this graph to deter-
mine larger program regions called power blocks which offer opportunities to save
leakage energy. Yun et al.,[42] have proposed a modulo scheduling algorithm that
produces a more balanced schedule for software pipelined loops with an objec-
tive to reduce the peak power and step power dissipation. Kannan et al.,[20] have
proposed temperature and process variation aware power reduction techniques for
functional units.

To the best of our knowledge, the only work for energy optimization in the context
of instruction decoder is due to Kuo et al.[23]. Kuo et al.[23] consider instruction
decoding as in superscalar architectures and propose to split (horizontally partition)
instruction decoder circuitry into two or more sub-decoders based on execution
frequencies of different instructions. They also propose to do pipelining (vertical
partitioning) of the instruction decoder to achieve energy and area benefits. The ex-
perimental results of Kuo et al., based on physical synthesis clearly demonstrates
that the horizontal and vertical partitioning of the instruction decoder is in general
useful in reducing the design complexity, power consumption, area overhead and
delay because of simplification of circuitry. In contrast to the work of Kuo et al.[23],
partitioning of instruction decoder in our work is geared more toward VLIW and
clustered VLIW architectures that demands decoding of large number of instruc-
tions in parallel. Thus, compared to functionally asymmetric partitioning of Kuo et
al, we consider partitioning of instruction decoder circuitry into functionally iden-
tical individual sub-decoders each of which can be controlled independently. The
pipelining of decoder as considered by us is more natural in VLIW context where a
fetch packet needs to be broken into execute packets and the current execute packet
needs to be aligned before actual decoding can begin. Apart from general benefits
of a partitioned design as demonstrated by Kuo et al., partitioned decoder design in
our proposal also provides an opportunity for fine grained leakage energy manage-
ment in the instruction decoder.

25

Most of the earlier work for register file power optimization has been done at ar-
chitecture level in the context of changing register file organizations to improve
register file energy consumption. For example, [4] proposed a hierarchical register
file, and [22][18] use auxiliary storage structures to optimize register file power
by reducing the ports. Tseng et al.[41] propose five different modifications to the
register file and the pipeline that in combination give significant benefits in total
register file power consumption.

Another recent work in the context of a superscalar processor proposes a scheduling
algorithm for partially bypassed superscalar processors that maximizes the number
of operand reads from datapath bypasses thereby reducing the register file access
and associated power consumption[33]. However, the proposed algorithm suffers
some performance degradation as it tries to schedule the dependent instructions
close to each other. In contrast, our work is in the context of explicitly scheduled
clustered processors and gains both energy and performance benefits. [2] proposes
a mechanism to put unused registers into low-leakage mode thereby saving leakage
power of register file. In contrast, our work is geared towards reducing dynamic
power of register files by reducing the extra accesses.

6 Conclusions and Future Directions

In this work, we propose compiler scheduling algorithms in the context of widespread
embedded clustered VLIW for power optimization in two major source of power
consumption namely, instruction decoder and register file. We consider a split in-
struction decoder design that enables energy optimizations in the instruction de-
coder. We evaluate a purely hardware based scheme that gains energy benefits for
short idle cycles delimited by frequent transitions. We also propose a new energy-
aware instruction scheduling algorithm that provides 14.5% and 17.3% benefit in
overall power consumption on an average over the purely hardware based scheme
in the context of 2-clustered and 4-clustered VLIW machines.

Higher number of register access due to a large number of inter-cluster move in-
structions make register files another major source of power consumption apart
from degrading performance in clustered VLIW architectures. In the context of
register files, we have proposed two new scheduling algorithms for register snoop-
ing based clustered VLIW architectures. Our experiments show that the proposed
algorithms, Simple and Aggressive reduce register file power consumption on an
average by 6.85% and 11.90% (10.39% and 17.78%) respectively along with per-
formance improvement of 4.81% and 5.34% (9.39% and 11.16%) over traditional
algorithm Greedy for a 2-Clustered (4-Clustered) VLIW machine.

In the future, we are planning to evaluate the temperature benefits of the proposed
power reduction techniques using temperature models such as HotSpot[39]. We are

26

also planning to integrate and experimentally evaluate the proposed schemes with
energy management techniques for functional units.

References

[1] S. G. Abraham, W. M. Meleis, and I. D. Baev. Efficient Backtracking Instruction
Schedulers. In Proceedings of International Conference on Parallel Architectures and
Compilation Techniques, pages 301–308, 2000.

[2] J. L. Ayala, A. Veidenbaum, and M. Lpez-Vallejo. Power-aware compilation for
register file energy reduction. International Journal of Parallel Program., 31(6):451–
467, 2003.

[3] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenbaum, and A. Nicolau.
Profile-based dynamic voltage scheduling using program checkpoints in the copper
framework. In Proceedings of Design, Automation and Test in Europe Conference
(DATE), March 2002.

[4] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi. Reducing the complexity of
the register file in dynamic superscalar processors. In Proceedings of the international
symposium on Microarchitecture, pages 237–248, Washington, DC, USA, 2001.

[5] M. Chu, K. Fan, and S. Mahlke. Region-based Hierarchical Operation Partitioning for
Multicluster Processors. SIGPLAN Notices, pages 300–311, 2003.

[6] K. D. Cooper and T. Waterman. Understanding energy consumption on the c62x. In
Proceedings of the Work. on Compilers and Operating Systems for Low Power, 2002.

[7] J. Derby and J. Moreno. A High-performance Embedded DSP Core with Novel SIMD
Features. In Proceedings of 2003 International Conference on Acoustics, Speech, and
Signal Processing, 2003.

[8] G. Desoli. Instruction Assignment for Clustered VLIW DSP Compilers: A New
Approach. Technical Report, Hewlett-Packard, 1998.

[9] S. Dropsho, V. Kursun, D. H. Albonesi, S. Dwarkadas, and E. G. Friedman. Managing
Static Leakage Energy in Microprocessor Functional Units. In Proceedings of the
International Symposium on Microarchitecture, pages 321–332, Los Alamitos, CA,
USA, 2002.

[10] P. Faraboschi, G. Brown, J. A. Fisher, and G. Desoli. Clustered Instruction-level
Parallel Processors. Technical report, Hewlett-Packard, 1998.

[11] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and F. Homewood. Lx: A Technology
Platform for Customizable VLIW Embedded Processing. In Proceedings of 27th
annual International Symposium on Computer architecture, pages 203–213, 2000.

[12] J. A. Fisher. Very Long Instruction Word Architectures and the ELI-512. In 25 years
of the International symposia on Computer architecture (selected papers), pages 263–
273, 1998.

27

[13] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy Caches:
Simple Techniques for Reducing Leakage Power. In Proceedings of the International
Symposium on Computer Architecture, pages 148–157, Washington, DC, USA, 2002.

[14] J. Fridman and Z. Greefield. The TigerSHARC DSP architecture. IEEE Micro, pages
66–76, 2000.

[15] B. M.-S. Gokhan Memic and W. Hu. NetBench: A Benchmarking Suit for Network
Processor. CARES Technical Report, 2002.

[16] D. R. Gonzales. Micro-risc architecture for the wireless market. IEEE Micro,
19(4):30–37, 1999.

[17] M. Guthaus, J. Ringenberg, and D. Ernst. MiBench: A Free, Commercially
Representative Embedded Benchmark Suite. IEEE workshop on Workload
Characterization, 2001.

[18] Z. Hu and M. Martonosi. Reducing register file power consumption by exploiting
value lifetime. In Workshop on Complexity Effectice Design at ISCA-27), June 2000.

[19] K. Kailas, A. Agrawala, and K. Ebcioglu. CARS: A New Code Generation Framework
for Clustered ILP Processors. In Proceedings of International Symposium on High-
Performance Computer Architecture, page 133, 2001.

[20] D. Kannan, A. Shrivastava, S. Bhardwaj, and S. Vrudhul. Power reduction of
functional units considering temperature and process variations. VLSI-DESIGN, pages
533–539, 2008.

[21] H. S. Kim, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. Adapting Instruction
Level Parallelism for Optimizing Leakage in VLIW Architectures. In Proceedings
of Conference on Language, Compiler, and Tool for Embedded Systems, pages 275–,
2003.

[22] N. S. Kim and T. Mudge. Reducing register ports using delayed write-back queues and
operand pre-fetch. In Proceedings of the international conference on Supercomputing,
pages 172–182, New York, NY, USA, 2003. ACM Press.

[23] W.-A. Kuo, T. Hwang, and A. C.-H. Wu. Decomposition of Instruction Decoders
for Low-power Designs. ACM Transaction on Design and Automation of Electronic
Systems, 11(4), 2006.

[24] V. Kursun and E. G. Friedman. Low swing Dual Threshold Voltage Domino Logic. In
Proceedings of the ACM Great Lakes Symposium on VLSI, pages 47–52, New York,
NY, USA, 2002.

[25] V. S. Lapinskii, M. F. Jacome, and G. A. De Veciana. Cluster Assignment for
High-Performance Embedded VLIW processors. ACM Transaction on Design and
Automation of Electronic Systems, pages 430–454, 2002.

[26] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: A Tool for
Evaluating and Synthesizing Multimedia and Communications Systems. International
Symposium on Microarchitecture, 1997.

28

[27] M. N. Mamidipaka. Power estimation of low-power high-performance memory
structures. PhD thesis, Long Beach, CA, USA, 2004. Chair-Dutt, Nikil.

[28] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating: speculation control for
energy reduction. In Proceedings of the international symposium on Computer
architecture, pages 132–141, Washington, DC, USA, 1998. IEEE Computer Society.

[29] M. Mutyam, F. Li, V. Narayanan, M. Kandemir, and M. J. Irwin. Compiler-directed
thermal management for vliw functional units. SIGPLAN Not., 41(7):163–172, 2006.

[30] R. Nagpal and Y. N. Srikant. A Graph Matching Based Integrated Scheduling
Framework for Clustered VLIW Processors. In Proceedings of ICPP Workshop on
Compile and Runtime Techniques Parallel Computing, pages 530–537, 2004.

[31] R. Nagpal and Y. N. Srikant. Integrated Temporal and Spatial Scheduling for Extended
Operand Clustered VLIW Processors. In Proceedings of Conference on computing
frontiers, pages 457–470, 2004.

[32] E. Ozer, S. Banerjia, and T. M. Conte. Unified Assign and Schedule: A New Approach
to Scheduling for Clustered Register File Microarchitectures. In Proceedings of
International Symposium on Microarchitecture, pages 308–315, 1998.

[33] S. Park, A. Shrivastava, N. Dutt, A. Nicolau, Y. Paek, and E. Earlie. Bypass
aware instruction scheduling for register file power reduction. In Proceedings of the
conference on Language, compilers and tool support for embedded systems, pages
173–181, 2006.

[34] G. G. Pechanek and S. Vassiliadis. The ManArray Embedded Processor Architecture.
In Proceedings of Euromicro Conference, pages 348–355, 2000.

[35] S. Rele, S. Pande, S. Onder, and R. Gupta. Optimizing Static Power Dissipation
by Functional Units in Superscalar Processors. In Proceedings of 11th International
Conference on Compiler Construction, pages 261–275, 2002.

[36] S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi, and J. D. Owens. Register
organization for media processing. Proceedings of International Symposium on High
Performance Computer Architecture, pages 375–386, 2000.

[37] J. Scott. Designing the low-power m.core architecture. In Power Driven
Microarchitecture Workshop at ISCA98, June 1998.

[38] N. Seshan. High VelociTI Processing. IEEE Signal Processing Magazine, March
1998.

[39] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tarjan.
Temperature-aware microarchitecture. In ISCA ’03: Proceedings of the 30th annual
international symposium on Computer architecture, pages 2–13, New York, NY, USA,
2003. ACM.

[40] Texas Instruments Inc. TMS320C6000 CPU and Instruction Set reference Guide.
http://www.ti.com/sc/docs/products/dsp/c6000/index.htm, 1998.

29

[41] J. H. Tseng and K. Asanovic. Energy-efficient register access. In SBCCI ’00:
Proceedings of the 13th symposium on Integrated circuits and systems design, page
377, Washington, DC, USA, 2000. IEEE Computer Society.

[42] H. Yun and J. Kim. Power-aware Modulo Scheduling for High-Performance VLIW
Processors. In Proceedings of 2001 International Symposium on Low Power
Electronics and Design, pages 40–45, 2001.

[43] W. Zhang, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, D. Duarte, and Y.-F. Tsai.
Exploiting VLIW Schedule Slacks for Dynamic and Leakage Energy Reduction. In
Proceedings of International Symposium on Microarchitecture, pages 102–113, 2001.

A Cluster Scheduling Problem

We are given a set of operation types, a set of resource types, and a relation be-
tween these two sets. This relation may not be strictly a mapping in general. This is
because a resource can perform more than one kind of operation and an operation
can be performed on more than one kind of resource. There can be more than one
instance of each type of resource. Resource instances can be partitioned into sets
each one representing a cluster of resources. We use the following notation:

O Set of operations

o An individual operations

R Set of resources

r An individual resource

N(RT) Number of instance of resource type RT

N(c,RT) Number of instance of resource type RT in cluster c

BW(ci,cj) Communication bandwidth between cluster i and cluster j

NT(t,ci,cj) Number of transfer between cluster i and cluster j in a time step t

RT(r) Type of resource r

OT(o) Type of operation o

C(r) Cluster of resource r

l An individual triple of L

ES(ú !) The subset of edges having ú ! as successor

Given a data flow graph, which is a partially ordered set (poset) of operations the
problem is to assign each operation a time slot, a cluster, and a functional unit in
a chosen cluster such that the total number of time slots needed to perform all the
operations in poset are minimized while the partial order of operations is honored

30

and neither any resource nor the ICC facility is over committed. Formally we are
given:

(1) A set of operation types OT, a set of resource types RT, and a set of clusters C
(2) A relation between two sets given by OR: OT û RT such that

� ¡ � � ! � for
an operation

� ! is a set of resource types
¡�� !ýü RT that can perform these

operations, and
(3) A set L of triples (t,c,r) where t is a time slot, c þ C and r þ R

A poset of operations can be represented as a directed acyclic graph G(V,E) where
V is a set of operations in the poset and E represent the set of edges. Edges are
labeled with a number representing the time delay needed between the head opera-
tion and the tail operation. Scheduling in this context is the problem of computing
a mapping S from a poset P to a set of triple L such that the number of time steps
needed to carry out all the operations in the poset is a minimum subject to these
constraints (apart from other architectural constraints).

(1)
ª ��y8�G�-�

i such that
� � � ! � £±� þ L, l.t

¹
max(w(

z�ÿ
)) for all j þ ES(

� !).
(2) RT(l.r) þ OR(

� !)
(3) C(l.r)=l.c
(4) � t � c � rt � (

� ! .t = t) � (
� ! .c = c) � (RT(

� ! .r) = rt)
ô

N(c,rt)
(5) � t � i � j NT(t,ci,cj)

ô
BW(ci,cj)

31

