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ABSTRACT

Estimating program worst case execution time(WCET) ac-
curately and efficiently is a challenging task. Several pro-
grams exhibit phase behavior wherein cycles per instruction
(CPI) varies in phases during execution. Recent work has
suggested the use of phases in such programs to estimate
WCET with minimal instrumentation. However the sug-
gested model uses a function of mean CPI that has no prob-
abilistic guarantees. We propose to use Chebyshev’s inequal-
ity that can be applied to any arbitrary distribution of CPI
samples, to probabilistically bound CPI of a phase.

Applying Chebyshev’s inequality to phases that exhibit
high CPI variation leads to pessimistic upper bounds. We
propose a mechanism that refines such phases into sub-phases
based on program counter(PC) signatures collected using
profiling and also allows the user to control variance of CPI
within a sub-phase. We describe a WCET analyzer built on
these lines and evaluate it with standard WCET and embed-
ded benchmark suites on two different architectures for three
chosen probabilities, p={0.9, 0.95 and 0.99}. For p=0.99, re-
finement based on PC signatures alone, reduces average pes-
simism of WCET estimate by 36%(77%) on Archl (Arch2).
Compared to Chronos, an open source static WCET ana-
lyzer, estimates obtained by refinement are more accurate
by 5%(125%) on Archi(Arch2). On limiting variance of
CPI within a sub-phase to {50%, 10%, 5% and 1%} of its
original value, accuracy of WCET estimate improves fur-
ther to {9%, 11%, 12% and 13%} respectively, on Archl.
On Arch2, accuracy of WCET improves to 159% when CPI
variance is limited to 50% of its original value and improve-
ment is marginal beyond that point.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems|:
Real-time and embedded systems; C.4 [Performance of
Systems]: Measurement techniques
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1. INTRODUCTION

The worst case execution time (WCET) of a program is
the maximum time a program will ever take to execute on
a given architecture. WCET estimates are necessary to de-
sign real-time systems where programs have deadlines to
adhere to. WCET estimates help build an optimal schedule
that ensures effective resource utilization. WCET analysis
is non-trivial as it depends on several factors like program
structure, input and complexity of the architecture.

Generally, WCET analyzers work on components of a pro-
gram. Static WCET analyzers[19] estimate WCET of pro-
gram components on an analytical model of the architec-
ture built for this purpose. Measurement based WCET an-
alyzers[11, 18, 20, 16, 22] measure execution time of these
components directly on the architecture either by native ex-
ecution or simulation. The overall program WCET is es-
timated by combining these costs using program structural
analysis. Statistical WCET analyzers measure end to end
execution times and fit models to estimate WCET|21, 12,
24, 23]. Instead of an absolute WCET estimate, one can
estimate WCET at various probabilities, especially useful,
when tasks with different priorities exist. Bernat et al[11]
probabilistically combine worst case effects of basic blocks
under three different scenarios and build the program worst
case path to estimate probabilistic WCET.

Each WCET analysis technique is applicable in a spe-
cific domain and has its own set of concerns. While static
WCET analysis guarantees safe WCET estimates, absence
of runtime information forces the analysis to make conser-
vative assumptions that might lead to pessimistic WCET
estimates. Statistical WCET techniques need to make their
model close to the real world as much as possible[10]. A
measurements based WCET analyzer might make unsafe es-
timates of WCET due to incomplete coverage of functions,
statements and conditions.

The amount of instrumentation remains a concern in mea-
surement based analyzers which typically measure basic blocks
or group of basic blocks of a program|5, 6]. Several pro-
grams exhibit phase behavior that refers to phase-like vari-
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Figure 1: Variation of Bitcount over time on Archl.

ation of CPI (cycles per instruction) observed during their
dynamic execution. In [8], we have demonstrated that pro-
gram phase behavior can be used to reduce instrumentation
in measurement based WCET analysis. Figure 1 plots cycles
per instruction(CPI) for every 1000 instructions executed for
Bitcount (Table 2). Within each phase, CPI varies homo-
geneously and is distinct across phases as shown. In order
to make use of phase behavior, we consider execution time
(processor cycles) as a product of instructions executed(IC)
and cycles per instruction(CPT).

The distinct CPI behavior of each phase drives the for-
mulation of program WCET as a sum of WCET of it’s con-
stituent phases. The homogeneity and repeatability of CPI
behavior within a phase helps in obtaining CPI of a phase
with minimal instrumentation. Code structural analysis is
used to mark phases in the program[14] that hold across dif-
ferent inputs. We instrument programs at every thousand
instructions in [8] resulting in an instrumentation ratio of
0.1%. The product of worst case number of instructions ex-
ecuted within a phase, Maz(IC) and worst case CPI of a
phase, Maz(CPI) is the WCET of that phase. Although
the idea is simple and promising, the method uses max-
imum of mean CPI observed as Maz(CPI) resulting in an
approximate WCET estimate that has no probabilistic guar-
antees[8].

Our objective is to improve the phase based WCET ana-
lyzer to yield WCET estimates associated with probabilistic
guarantees. For this purpose, we compute probabilistic up-
per bound of phase CPI that is multiplied by Max(IC) to
yield a probabilistic WCET estimate. For each phase, CPI
samples are collected by measurement at numerous points
by running benchmarks with a large number of test inputs.
The true probability distribution of these CPI samples is
not known. We know that the samples have finite mean
and finite variance. Hence we use Chebyshev’s inequality
to bound CPI of a phase within a confidence interval for a
probability, p. Applying Chebyshev’s inequality to bench-
marks with stable CPI behavior (coefficient of variation or
CoV of CPI < 0.5%) results in accurate WCET estimates
(that are within 1% of maximum observed cycles even at
p=0.99).

Some benchmarks like Bubble_sort (Table 2) exhibit high

variation in CPI during execution(Figure 2). Applying Cheby-

shev’s inequality directly for such phases yields a wide con-
fidence interval for CPI leading to highly pessimistic WCET
estimates, as execution time is directly proportional to CPI.
It is observed that deviations in CPI correspond to devi-
ations in the program counter even at a granularity of a
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Figure 2: Deviation of CPI around the mean in Bub-
ble sort on Archli.

few tens of instructions. Using this observation, we refine
such phases into smaller sub-phases based on PC(program
counter) signatures, collected using profiling. These signa-
tures basically encode path information of loop iterations in
a concise manner and are analyzed to isolate high deviations
in CPI. Re-applying Chebyshev’s inequality on CPI samples
for each sub-phase gives us a tight bound on CPI thereby
resulting in an accurate WCET estimate. The refinement
process also allows the user to control CPI variance within
a sub-phase and hence accuracy of WCET.

For evaluation, we choose two architecture, Archl and
Arch2 as shown in Table 1 with benchmarks taken from
Milardalen WCET project suite[3] and embedded bench-
mark suite, Mibench[1] (Table 2). All measurements are
carried out using cycle accurate simulator, Simplescalar Ver-
sion 3.0[4]. We compute bounds on CPI for unrefined and
refined phases respectively at three chosen probability val-
ues, p={0.9, 0.95, 0.99}.

For benchmarks that exhibit high variation of CPI, refine-
ment is observed to reduce pessimism in WCET estimates by
36%(Arch1) and T7%(Arch2), on an average, compared to
unrefined phases. Refinement of sub-phases further limiting
CPI variance to {50%, 10%, 5%, 1%} of original sub-phase
CPI variance is observed to improve accuracy of WCET fur-
ther, on both architectures, compared to refinement based
on PC signature alone. Compared to Chronos, at p=0.99,
WCET estimates computed using phase refinement based
on PC signature and limiting CPI variance of sub-phase to
(50%, 10%, 5%, 1%) of original sub-phase CPI variance, are
tighter by {156%, 20%, 21%, 23%, 24%} on Archl and by
{149%, 159%, 159%, 159%, 159%} on Arch?2 respectively.

We address the following questions in this paper.

1. How can we obtain robust WCET estimates that are also
accurate in the phase based timing model?

2. How can we isolate points of high CPI variation within a
phase?

3. How can we control CPI variation within a phase?

4. What is the impact of 2 and 3 on WCET accuracy?

The rest of the paper is organized as follows. Section 2
outlines the phase based WCET analyzer. Section 3 de-
scribes the basic framework to compute probabilistic bound
on CPI of a phase. Section 4 describes phase refinement
in detail and how refined phases can be used to estimate
WCET. The proposed technique is evaluated in Section 5
and compared with related work in Section 6. The paper is
finally concluded in Section 7.



Table 1: Architectural configurations used for ex-

perimentation.
Common

Issue, decode and commit width=1,

Parameters |[ Register update unit (RUU) size=8,
Fetch Queue size=4
Archl 8KB direct mapped Instruction cache,
Out of order Issue, 2-level Branch
Predictor
Arch2 In-order Issue, 8KB direct mapped Instruction

Instruction cache, 8KB 2-way set associative
Data cache, Unified 64KB 8-way associative,
L2 cache, Perfect Branch Prediction

2. PHASE-BASED TIMING MODEL

In [8], we propose to estimate program WCET as a sum of
WCET of it’s phases. A phase corresponds to a static code
region detected by code structure analysis[14]. The unit
of analysis is a hierarchical call loop(HCL) graph, created
out of the program binary. The program is executed with
various inputs to ensure coverage of all functions and condi-
tions. Profile data is used to annotate the HCL graph with
hierarchical information regarding number of calls, loop it-
eration counts, variance in instructions executed every time
each call/loop is executed. The HCL graph is analyzed to
pick phase marker edges. The code region lying between a
marker edge el and the following marker edge e2 comprises
the phase associated with el.

The WCET of a program is estimated as,

where p is the number of phases of the program.
WCET of the i-th phase, is estimated as,

WCETZ = Ti X Maac(IC’@) X Maac(C’PIz) (2)

where, T;: Maximum number of times phase i occurs dur-
ing execution.
Max(IC;): Worst case instruction count(IC) of phase i.
Maz(IC;) is either the theoretical upper bound on IC derived
using static analysis(SWIC;) or the maximum observed IC
of phase i(MIC;)[8].
Max(CPI;): Worst case CPI of phase i. CPI is measured
within each phase at various points and maximum of mean
CPI across all tested inputs is taken as Maz(CPI;). In this
work, we use probabilistically bounded CPI instead of maxi-
mum of mean CPI to obtain a more robust WCET estimate.
A program depending on its structural complexity, can ex-
ecute different code regions(phases) on execution with dif-
ferent inputs thereby exhibiting multiple phase sequences
across inputs[8]. In that case, WCET is estimated as the
maximum among WCET of all possible sequences.

3. COMPUTING BOUNDS ON PHASE CPI

We now describe how CPI of a phase is bounded for a
given probability, p. To bound CPI, we collect n CPI sam-
ples for each phase(static code region) to form the sample

set, S, by running the program with a large number of test
inputs. CPI is measured at intervals ranging from 100 to
1000 instruction depending on the program dynamic execu-
tion length.

On an average, CPI samples are observed to be within
10% of the sample mean(fi) on both architectures. Our main
objective is to quantify the amount by which a future CPI
sample can be away from p for a given probability(p). Had

we known the true probability distribution of the samples
(ascertained only if true population set, S;, built by exer-
cising all paths within phase 7 is known), we could apply
an appropriate probability density function to compute the
confidence interval to contain a future CPI sample for proba-
bility p. Building S; is computationally expensive. Hence we
use Chebyshev’s inequality as it can be applied to any arbi-
trary distribution. Chebyshev’s inequality only requires the
random variable(CPI) to have finite mean and finite vari-
ance. If variance is small, bounds obtained using Cheby-
shev’s inequality are tight.

Chebyshev’s inequality: The inequality states that p,
probability of a future sample, cpi,, being greater than mean
of S;i(u), is as follows,

0_2

P(lepiz —pl > C) < Yo?] (3)

Where, C is an arbitrary constant, p is true mean of the
distribution and ¢ is true variance of the distribution. We
can use sample mean, [ and sample variance, 52 in Eq.3
provided variance of sample mean, Var(i) is small.
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Var() == (4)

Var(fz) is inversely proportional to the number of samples,
n. Hence with increasing n, Var(i) decreases[25]. Since we
have a large number of samples, we can confidently use [
and 52 in place of y and o2 to give the following equation.
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Pllepia ~ i > C) < 2 (5)

Applying Chebyshev’s inequality to S\h we obtain a con-
fidence interval [CP1;;, CPI;,] within which a future CPI
sample will lie with probability p. As WCET is to be es-
timated, we use the upper bound of the interval, CPIL; .,
which for probability p, is referred as PrCPI,. Hence origi-
nal timing equation, Eq.2 is modified to,

WCET, =T, x Maxz(IC;) x PrCPI, (6)

Since we use theoretically bounded Maz(IC;), which is a
constant and is multiplied by PrCPI,, the probabilistic guar-
antee applies to the resultant WCET as well. For bench-
marks that exhibit low variance in CPI, Chebyshev’s in-
equality tightly bounds phase CPI. Applying the inequality
to phases with high variance in CPI results in a wide con-
fidence interval leading to higher PrCPIp values and hence
pessimistic WCET estimates. In the next section, we will
see how such phases can be divided into smaller sub-phases
to obtain tighter CPI bounds and hence tighter WCET es-
timates.

4. PHASE REFINEMENT

Code structure analysis[14] ensures that variation in in-
structions executed within a phase is much lesser than the
corresponding variation across different phases. However,
presence of if-conditions in loops or calls can cause high vari-
ance in instructions executed across loop iterations or call in-
vocations. The if-condition of the inner-loop in Bubble_sort
(Figure 3), when true, executes additional code compared to
when the condition is false. The HCL graph for the routine
created by profiling with a set of 5 different inputs, is shown
in the same figure. Each loop is represented by a loop head



Table 2: Benchmarks and their characteristics.

for(j=0; Jj<N-1; j++) Cov, =13.36%
{
if ( A[3] > A[j+1] ) C=700 A=973765.07

Cov, =65.6%

C=700 A=973761.07
Cov, =65.62%

C=2051350 A=4.405
C()vum= 112.71%

Figure 3: Code structure of Bubble sort routine and
its HCL graph.

node and a loop body node in the HCL graph. The edge as-
sociated with loop head node stores information about the
number of times loop head was executed(C), hierarchical
average number of instructions(A) and CoV in instructions
executed(CoVnst) over different executions. Similarly the
edge associated with loop body node stores these informa-
tion pertaining to a loop iteration. It can be observed that
loop edges have a very high CoVins: hence do not qualify
as software markers resulting in the whole routine being se-
lected as a single phase[14]. Considering the entire loop as
a single phase exhibits high variation in CPI(Figure 2).

In such cases, we could statically mark the code region
associated with each iteration and hence each path per iter-
ation as a different phase. But that would not work because,
a) The underlying architecture is based on a pipeline con-
sisting of several stages. Multiple instructions are in flight at
the same time. A phase should be lengthy enough to allow
at least few instructions to completely execute to facilitate
calculation of CPI of the phase.

b) Instrumenting every few instructions can hamper perfor-
mance of the program that we are trying to measure.
Hence it appears that we need to find a mid point where
phases are big enough, at the same time, small enough to
obtain tight bounds on CPI.

An intuitive approach is to consider every z consecutive
iterations of a loop, L, as a potential phase, which we term
as a window, W. We emit dynamic execution information of
every window, W, in the form of a triple, defined as a PC
signature (Figure 4), storing the following information.
PCbitmap: The bitmap is a vector of 4 integers (128 bits).

Benchmark Description Phase Sequence Static Avg. Dynamic
Length | Length

Bezier (Bez) Draws a set of 200 lines of 4 reference points P1 P2 114 107901512

on a 800x 600 image.
Bitcount (Bit) Performs bit operations on a 1K bit-vector P1 P2 P3 P4 P5P6 | 257 404910
a thousand times[1].

Binary Search (Bs) Search for a key in a 50K number vector[3]. single 51 6329

Bubble sort (Bub) Sort an array of size 3K[3]. single 55 41472125

CNT (Cnt) Counts positive numbers in a 200x200 matrix|[3]. P1 P2 72 653672

CRC (C'rc) Cyclic redundancy check on a 16KB char vector[3]. P1 P2 84 583140

FIR (Fir) Finite impulse response filter over a signal of size 400[3]. | single 272 148171

FFT (Fft) Fast fourier transform on a wave of size 16K][1]. P1 P2 277 8508909

Insertion Sort (Ins) Sort a 3K number vector[3]. single 38 24899477

Janne_complex (Jan) | A nested loop program, a, b are input parameters single 35 1201362

LMS (Lms) Adaptive signal enhancement[3]. single 142 567565

Matmul (Mat) Matrix multiplication of two 200x 200 matrices[3]. P1 P2 106 105090836

{1 Y I [
for( i=0; i<N; i++ ) Cov,,=13.36%
( - \
C=5 A=1807306
..... PC bitmap CPI IC

(4 integers) (1 float) (1 integer)

|4OC1c1c0|414101C1|c0c0(:040|606040cO|1.385 | 55) |

A single PC signature

Figure 4: Format of a single PC signature.

The simulator hashes every instruction PC encountered and
stores it into the bitmap. 127 bits are sufficient to map PC
addresses in each phase of the benchmarks considered in this
paper.

CPI: CPI represents observed cycles per instruction while
instructions belonging to W are executed.

IC: IC represents number of instructions executed that be-
long to W.

4.1 Refinement Based on PC Signature

Refinement consists of three steps: trace generation, trace

compression and classification of compressed trace into sub-
phases.
1) Trace Generation: In order to generate a trace, we
first identify the branch instruction that iterates loop L of
the phase. If L is nested with several levels, we select the
innermost loop. The simulator is modified to count x consec-
utive executions of the branch instruction of L. If Min(|L;|)
denotes the minimum number of instructions executed in
each loop iteration ¢ of L, number of iterations that make
up a single window, z is defined as,

e [Phase_length“ )

where, Phase_length is the number of instructions that make
up a phase. On a given architecture, Phase_length should
be greater than the minimum number of instructions that
have to be executed for at least one instruction commit. A
Phase_length of 50 instructions suffices for both architec-
tures considered in this paper (Table 1). z being a ceiling
value, Eq.7 might cause some windows to be composed of
more than 50 instructions. z will not always be an exact
multiple of |L|. Hence the execution time of the last few



Trace of a single run of Bub

PC Bitmap cPI Ic
202020002020202020
202020002020202020
202020002020202020
202020002020202020
202020002020202020
20202020202020203030202030303030
202020002020202020202020
202020002020202020
202020002020202020
202020002020202020
202020002020202020

250000 64
250000 64
250000 64
250000 64
250000 64
451610 93
291140 79
250000 64
250000 64
250000 64
250000 64

Compressed trace of a single run of Bub

PC Bitmap cPi IC  #duplicates
202020002020202020 1.250000 64 147
20202020202020203030202030303030 1.a51610 93 1
202020002020202020202020 1.291140 79 1
202020002020202020 1.250000 64 93

Figure 5: Signature trace of a single run of Bubble
sort and its compressed version

iterations will have to be added separately. If the phase has
multiple loops, the same procedure is repeated for all loops
within the phase.

A loop with small |L;| will have windows comprising of a
large number of iterations. If |L;| is greater than minimum
Phase_length, every iteration forms a window. If | L;| is well
beyond minimum Phase_length, we can use code structure
analysis to break it into smaller phases. The benchmarks
considered in this paper comprises of loops where |L;| <
minimum Phase_length. The cycles taken by code preceding
loop L of phase P, if any, is added separately.

When a program is simulated by Simplesim-3.0 modified
as explained above, we obtain a trace consisting of % such
signatures, where |L| is the loop iteration count of L. The
modifications to simulator does not impact execution cycles
of the program as PC values are read off the pipeline and
processed in parallel. In the worst case, for every 50 instruc-
tions executed, a trace comprising of 6 words, is emitted out
and the 4-word hash table is reset.

An integer vector that stores occurrences of each PC en-
countered would be more accurate to represent path infor-
mation of every window, instead of the existing bitmap. But
that would clearly not scale with z and would lead to huge
traces. The bitmap is imprecise as we shall now see with an
example.

In Figure 3, assume the inner loop executes 18 instruc-
tions when if-condition evaluates to true and 10 instructions
when it evaluates to false. Let window size, x be 4 iter-
ations. Consider two such windows W7 and Ws. Assume
in Wi: if-condition is true once and false three times. In
Wa, if-condition was true three times and false once. The
PCbitmap will be identical in both cases but IC(W1) = 18
x 1+ 10 x 3 =48. IC(W2) =18 x 3 + 10 x 1 = 64.
Hence IC serves to store extra information without bloating
the trace. Although seeming imprecise, the combination of
IC and PCbitmap is observed to be sufficient to isolate high
CPI variations in most cases.

2) Trace Compression: Lengthy program runs can pro-
duce megabytes of trace. But they are easily compressible
owing to the repetitive nature of phases. A large number
of consecutive windows have identical PC signatures which
can be compressed (Figure 5). We look for consecutive triples
that repeat to compress them. The time complexity of the
compression algorithm is linear to the trace size.

3) Trace Classification: A one-to-one correspondence is
observed between <PC-bitmap, IC> and CPI in the trace
for program Bubble sort (Figure 5), which is observed in

J*xxkkxrnxxRR**R**  Refine sub-phase based on CPI *****xxkxxxkxx/
/* Inputs: */
/* <CPI data for each sub-phase> */
/* <Variance_threshold> */
/* output: */
/* <New Bounds on CPI for each new sub-phase> */

R K kR kR K kKK KK KK K KK R Kk K ok kR ok kR Kk R Kk

Split(sub-phase CPI_vector)
Compute variance of CPI;
While (variance > Variance_threshold) do
Split sub-phase_CPI_vector into two depending on range of values
/* vector_1 range: [lower..mean] vector_2 range: [mean..upper] */
Split(vector_1);
Split(vector_2);
end for
end Split

Bounds (sub-ph . CPI_file)
Compute mean of CPI;
Compute Variance of CPI;
Compute Chebyshev bounds on CPI;
end Bounds
Procedure main
for each sub-phase, i, do

Split(i); // generates new sub-phases
for each new-sub-phase, j, do
Bounds (j);

end for
end for
end main

Figure 6: Algorithm to refine sub-phase based on
CPI variance.

other benchmarks as well. This happens because CPI is
largely determined by the instructions that execute[14]. Based
on this, we define a sub-phase as a unique pair of <PCbitmap,
IC> values. All windows with the same <PCbitmap, IC>
value belong to one sub-phase. For each such sub-phase, new
confidence intervals are computed by applying Chebyshev’s
inequality on CPI samples pertaining to that sub-phase.

The time taken by the classification algorithm is O(m x
n), where m is the number of unique <PCbitmap, IC> pairs
(sub-phases) and n is the number of entries in the com-
pressed trace. On an average, number of sub-phases, m, de-
tected for benchmarks used in this paper is 15.04(15.33) for
Archi(Arch2) even if number of windows for some bench-
marks go upto a few thousands. The size of compressed trace
obtained across all inputs for a program, n, ranges from 2
MB to 1.8GB. The average sub-phase size observed across
all benchmarks is 62 resulting in an average instrumentation
overhead of 1.6%.

4.2 Refinement Based on CPI Variance

Inspite of refinement based on PC signature, certain sub-
phases exhibit high variance of CPI. Hence we add another
level of refinement wherein the user can control the variance
of CPI within the sub-phase. The classification will now be
based on <PCbitmap, IC, CPI-range>. The procedure re-
peatedly splits the sub-phase until the CPI values fall in the
desired range giving rise to variance well within the spec-
ified limit(Figure 6). The time complexity of Split is O(n
x log(n)), where n is the number of entries in sub-phase
CPI file. The overall time complexity of the refinement pro-
cedure is O(m X n X log(n)) where m is the number of
original sub-phases.

4.3 WCET Estimation Using Sub-Phases

A phase represents a static code region. Whereas a sub-
phase represents a group of consecutive loop iterations. Ev-
ery single loop iteration is included in the analysis. Sub-
phases do not overlap as each of them represent a different
group of loop iterations. In order to estimate WCET in
terms of sub-phases, Eq.6 has to be suitably modified. Dif-
ferent phases can occur on execution with different inputs[8].
The same holds for sub-phases. The set of sub-phases that
occur for a particular program run with input ¢ forms a sub-



phase sequence S;. Note that we are not interested in the
exact order in which sub-phases occur.

A sub-phase sequence (S;) obtained with input 4, takes
the form of an integer vector, [si.o, Si.1, ... , Si.sp] Where
sp is the total number of sub-phases appearing across all
inputs. s;.; indicates the number of times sub-phase j occurs
in the execution run of program with input 7. Among two
sequences, S, and Sy, obtained with inputs a and b, such
that sa.x > sp.x V k = {0,..,sp}, we include only S,. The
number of unique sub-phase sequences that can occur range
from 1 to over a hundred.

For each sequence, S;, WCET;, is estimated as-

WCET, = EjE{O,“,Sp} (Sj X MG,ZC(IC]') X PTCPIP) (8)

sj is the sub-phase counterpart of T;(in Eq.6). Since sub-
phase is a dynamic entity, we use maximum observed IC in
a window, occurring for the bitmap corresponding to sub-
phase j, across all inputs as Maxz(IC;). For s possible se-
quences, overall WCET is estimated as,

WCET = max(WCET, ..., WCET,) (9)

Equation 8 applies to loops that iterate the same number
of times for all inputs. However, the loop can terminate
sooner than intended depending on data. It is hence useful
to compute WCET in a situation when iterations reach the
loop bound. For this purpose, we calculate the theoretical
upper bound on the number of windows, SWW, possible for
a given loop making up a program phase. If |L| denotes
the loop bound of L, z denotes the number of iterations per
window, SWW is computed as,

sww =L
x

For each unique sub-phase sequence, S;, we calculate the

weight of each sub-phase, k, occurring in that sequence as,
we — Si,k
P = ——F
Eje{(),u,sp}si,j

And consequently, WCET; is estimated as,

WCET, = Sicqo....epy (w; x SWW x Maz(IC;)x PrCPI,)

(10)
4.4 Context Sensitivity

An analysis of a program fragment is said to be con-
text sensitive if it takes into account the context in which
the fragment appears. Context sensitive analysis has been
observed to improve precision of WCET analysis signifi-
cantly[22]. Context sensitive analysis is typically applied
for procedures and loops. In this paper, we treat a pro-
cedure appearing in two different contexts as two different
procedures. It is observed that the first iteration of a loop
takes more time to execute (greater CPI) than rest of the it-
erations[17]. Hence we treat the first window (that includes
the first iteration) of a loop as a separate sub-phase.

5. EVALUATION

All our experiments are performed on benchmarks taken

from Mibench and Mélardalen standard WCET project bench-

mark suite(Table 2), for architectures mentioned in Table 1.
The benchmarks are compiled to MIPS PISA binaries with
-02 -static flags. Simplescalar Version 3.0 is used to ob-
tain CPI samples and generate traces of PC signatures with
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Figure 7: Ratio of probabilistic CPI upper bound
to mean CPI at p={0.9, 0.95, 0.99} on Archl. Per-
centages indicated next to bars refer to coefficient
of variation of CPI.
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Figure 8: Ratio of probabilistic CPI upper bound
to mean CPI at p={0.9, 0.95, 0.99} on Arch2. Per-
centages indicated next to bars refer to coefficient
of variation of CPI.

modifications described in Section 4.1. Input selection is
done primarily on the basis of MC/DC coverage criteria.
Randomly generated inputs are also used. Each (bench-
mark, input) pair is executed with 500 different inputs mul-
tiple number of times to model different initial states[7] and
atleast one million CPI samples per phase are generated.
Invalid inputs and inputs that terminate execution early are
not considered for analysis. The resulting estimates are com-
pared with the open source static WCET analyzer Chronos
as it models the MIPS architecture.

5.1 Impact of Coefficient of Variation of CPI
on Probabilistic Upper Bound of CPI
Chebyshev’s inequality yields tight CPI bounds for phases
that exhibit low CoV(CPI) as can be seen from Figures 7
and 8 which plot PrCPI, at p={0.9, 0.95, 0.99}, normal-
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Figure 9: Archl: Percentage breakup of sub-phases
based on CoV(CPI).

ized to the mean CPI, for all program phases on Archl and
Arch2 respectively. However, applying the inequality di-
rectly to phases like Mat_P2(Arch2) with high CoV(CPI)
results in pessimistic upper bounds of CPI, as can be seen
from Figure 8. Hence we need to refine such phases into
smaller sub-phases. This will reduce CPI variance within a
sub-phase and help yield tighter CPI bounds.

5.2 Impact of Refinement on Coefficient of Vari-

ation of CPI

We now compare sub-phases obtained using refinement
based on unique <PCBitmap, IC> pairs with the corre-
sponding unrefined phase based on their CoV(CPI). Figures
9 and 10 group sub-phases into four categories as shown.
The breakup of only those unrefined phases that exhibit
high CPI variance is shown. Post refinement, 63%(87%)
of sub-phases exhibit CoV(CPI) that is less than 25% of the
corresponding unrefined phase CoV(CPI) on Archl1(Arch2).
Sub-phases of Bit P2 (Archl), Fft P2, Bit P6 (Arch2) and
Ins(Arch2) continue to exhibit high CoV(CPI). Such sub-
phases are further refined into smaller sub-phases based on
CPI variance as outlined in Section 4.2.
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Figure 10: Arch2: Percentage breakup of sub-phases
based on CoV(CPI).
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Figure 11: Comparison of WCET estimates using
proposed method with Chronos and Baseline esti-
mates on Archl.

5.3 Accuracy of WCET

Figures 11 and 12 plot the ratio of estimated WCET to
maximum observed cycles (Pessimism in the WCET esti-
mate) observed when the proposed phases/sub-phases are
used for p=0.99. Unrefined and Refined bars represent the
pessimism observed using unrefined phases and phases re-
fined based on PC signature respectively. The 50-per, 10-
per, 5-per and 1-per bars indicate pessimism in WCET ob-
tained using refined sub-phases with variance of CPI limited
at {50%, 10%, 5% and 1%} of CPI variance of original sub-
phase respectively. Alongside the bars, WCET estimated
by Chronos (chronos-WCET) and our original phase based
model (Eq.2)[8] (Baseline) are also plotted.

The theoretical maximum IC executed coincides with max-
imum observed IC for benchmarks with straight line code.
However they differ for programs with complex conditions
and loops. The bars in Figures 11 and 12 are plotted us-
ing maximum observed IC (for phases) and maximum ob-
served windows (for sub-phases). Similarly the upper limit
of the bar is plotted using theoretical upper bound on IC (for
phases) and theoretical maximum windows (for sub-phases).
CoV/(CPI) for benchmarks like Fir(Archl), Lms(Arch1) and
Jan(Arch2) is less than 1%. As a result, the phase CPI
bounds obtained by Chebyshev’s inequality are tight enough
and improvement by refinement is very marginal.

Applying Chebyshev’s inequality to phases with high vari-
ation of CPI leads to pessimistic unrefined WCET estimates
as shown in Figures 11 and 12. Refinement based on PC
signature reduces pessimism considerably(Table 3). The
reduction is less on Archl as CPI variation is more scat-
tered possibly due to an out-of-order pipeline and a realistic
branch predictor. Refinement based on CPI variance contin-
ues to reduce pessimism further. The average improvement
in accuracy of WCET estimate compared with Chronos for
p=0.99 is also shown. As expected, Eq.10 gives a more pes-
simistic WCET as it uses theoretical upper limit of windows.

Figure 13 plots level of refinement needed to reach a point
of zero CPI variance in every sub-phase of the benchmark.
Refinement beyond this point will not improve accuracy



Table 3: Impact of Refinement on pessimism of
WCET and comparison with Chronos

p [ 100-per | 50-per [ 10-per | 5-per [ 1-per
(Archl)
% Reduction in pessimism compared to unrefined WCET
0.9 20.13 21.81 22.3 22.66 23.25
0.95 | 23.3 25.64 26.39 26.82 27.56
0.99 | 35.74 40.63 42.48 43.19 44.82
% Average Pessimism of all refined estimates using Eq.8
0.99 T 11.99 [ 6.41 [ 4.53 [ 3.86 [ 2.56
% Average Pessimism of all refined estimates using Eq.10
0.99 [ 19.84 [13.85 [ 11.97 [ 11.06 [ 9.63
% Improvement in accuracy compared to Chronos using Eq.8
0.99 [ 15.46 [ 20.02 [ 21.56 [ 22.63 [ 24.02
% Improvement in accuracy compared to Chronos using Eq.10
0.99 [ 4.91 [ 9.25 [ 10.75 [ 11.57 ] 12.84
(Arch2)
% Reduction in pessimism compared to unrefined WCET
0.9 35.83 42.23 42.37 42.37 42.37
0.95 | 44.37 52.46 52.65 52.65 52.65
0.99 | 77.11 92.09 92.5 92.5 92.52
% Average Pessimism due to refinement using Eq.8
0.99 [ 20.66 [ 4.82 [ 3.97 [ 397 1396
% Average Pessimism due to refinement using Eq.10
0.99 [ 31.35 [11.63 [ 11.23 [ 11.23 [ 11.22
% Improvement in accuracy compared to Chronos using Eq.8
0.99 [ 148.88 [ 191.62 [ 191.62 [ 191.62 [ 191.65
% Improvement in accuracy compared to Chronos using Fq.10
0.99 [ 125.5 [ 158.97 [ 158.97 [ 158.97 [ 159
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Figure 12: Comparison of WCET estimates using
proposed method with Chronos and Baseline esti-
mates on ATChQ.(Chronos goes out of memory while ana-
lyzing Fft(Arch2).)

of WCET. The benchmarks falling under the grey band
have accurate WCET estimates either without refinement
or when refined based on PC signatures alone and hence
not considered for refinement based on CPI variance. Bub-
ble sort, Bitcount and Cnt(Archl) continue to show variance
in CPI even beyond a point when CPI variance is limited
to 1% of CPI variance of the original sub-phase. With CPI
variance of a sub-phase limited to 10% of original sub-phase
CPI variance, 4 out of 9(5 out of 7) benchmarks reach the
point of maximum WCET accuracy on Archl(Arch2).

The WCET estimates obtained by different kinds of refine-
ment as described in the paper are evaluated with respect
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Figure 13: Amount of refinement required to reach
zero variance of CPI within a sub-phase.
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Figure 14: Impact of refinement on number of sub-
phases on Archl.
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Figure 15: Impact of refinement on number of sub-
phases on Arch2.

to safety by running the benchmarks with a new set of 1000
inputs that were not considered for estimating CPI bounds.
None of the estimates (refined based on PC signature, re-
fined based on CPI variance) fall below maximum observed
cycles at p={0.9, 0.95 and 0.99} on both architectures.

5.4 Impact of Refinement on Sub-phases

Refinement splits a phase into smaller sub-phases based
on PC signature. When a sub-phase is refined based on CPI
variance, many more smaller sub-phases are generated. Fig-
ures 14 and 15 plot the increase in number of sub-phases
due to refinement based on PC signature(indicated by 100-
per(Refined) and refinement based on CPI variance (50-per



to I-per). Number of sub-phases reaches a saturation point
for 69%(96%) of phases by the time CPI variance of a sub-
phase is limited to 50% of CPI variance in the sub-phase
obtained by refinement based on PC signature alone on
Archi1(Arch2). The reason could be that Arch2 has an in-
order processor with perfect branch prediction.

5.5 Compression

Table 4 compares the average sizes of trace obtained across
all inputs before and after compression on both architec-
tures. On an average, traces are compressed by a factor of
24.86(24.21) on Archl(Arch2).

6. RELATED WORK

Program Phase Behavior: In this paper, we extend the
phase based WCET analyzer that we proposed in [8] to use
probabilistically bounded phase CPI to obtain more robust
WCET estimates. The earlier model uses a function of mean
CPI which has no probabilistic guarantees and hence under-
estimates WCET for a few programs[8]. We also profile PC,
CPI and IC of loop iterations to refine a phase with high
CPI variation into smaller sub-phases. Phases described in
[8] are architecture independent. The minimum sub-phase
size in our case is architecture dependent. Although the
PC bitmap which is determined by code structure is inde-
pendent of the architecture, number of instructions executed
within each sub-phase and CPI of a sub-phase is determined
by the architecture.

Davies et al[9] record instruction pointers encountered
during execution in the form of an integer vector(EIP) that
are classified into phases based on grouping of EIP values.
However their purpose is to have minimal error in estimating
phase CPI by collecting least number of samples in a phase
to reduce simulation effort. We consider all CPI samples
in a phase, our objective being WCET estimation. More-
over we benefit from a large sample set, as confidence of
Chebyshev bounds increases with the number of CPI sam-
ples(Eq.4). The phases in [9] are large(>=100 million in-
structions) compared to our phases (50-100 instructions).
The existence of phase behavior at different levels was first
studied by [13] that use sequitur to classify the trace consist-
ing of loop branch, procedure call and return instructions in
the context of reducing simulation effort. In addition to PC
Bitmap and IC of loop iterations, we classify phases based
on measured CPI as well.

Measurement Based WCET Analysis: Measurements
are taken either at the whole program level or at the level of

basic blocks[11, 16, 22], program segments[18, 17] or paths[20].

Measurement usually generates a timing trace from which
cost of each component is derived. These costs are combined
using structural analysis and techniques like IPET[19] to es-
timate WCET. The location of instrumentation points in-
fluence trace size and accuracy of WCET estimate consider-
ably[6]. Further, instrumentation should be least intrusive.
The repetitive manner in which CPI varies in programs that
exhibit phase behavior can be used to reduce instrumenta-
tion required in WCET analysis of such programs. We pro-
pose to instrument at the level of groups of loop iterations
leading to a low instrumentation overhead of 1-2%. The
number of iterations per group can be varied as per the re-
quirement. Phases also help in compressing PC signatures
considerably(Table 4). The issue of adequate program cov-
erage is equally important in this work as it is for any other
measurement based WCET analyzer.

Table 4: Average trace size across inputs before and
after compression.

Phase Trace size Trace size Compression
before after factor
compression compression

Archl — Arch2 | Archl — Arch2?

Bez_P1 1.8M 92K 68K 20:1 27:1

Bez_P2 | 50M 504K 312K 101:1 27:1

Bit_P1 24K 24K 24K 1:1 1:1

Bit_P2 48K 46K 23K 1.04:1  2.4:1

Bit_P3 160K 104K 96K 1.53:1  1.66:1

Bit_P4 28K 8K 8K 3.5:1 3.5:1

Bit_P5 32K 8K 8K 4:1 4:1

Bit_P6 32K 8K 8K 4:1 4:1

Bit_P7 32K 8K 8K 4:1 4:1

Bs 8K 8K 8K 1:1 1:1

Bub 23M 17TM 11M 1.35:1  2.09:1

Cnt_P1 180K 28K 24K 6.42:1  7.5:1

Cnt_P2 | 212K 24K 24K 8.83:1 8.83:1

Crc_P1 8K 8K 8K 1:1 1:1

Crc_P2 780K 12K 8K 65:1 97.5:1

Fft_P1 220K 8K 20K 27.5:1  11:1

Fft_p2 220K 8K 20K 27.5:1  11:1

Fir 28K 8K 8K 3.5:1 3.5:1

Ins 21M 408K 328K 52.7:1  65.5:1

Jan 904K 4K 4K 223:1 223:1

Mat_P1 | 316K 48K 36K 6.58:1  8.77:1

Mat_P2 | 75M 5.2M 3.6M 14.4:1  20.8:1

Statistical WCET Analysis: Bernat et al[11] measure
execution time of basic blocks(execution time profiles or
ETPs) and note their relative frequencies. The ETPs are
convolved together to give probabilistic WCET estimates
using three different scenarios- ETPs are mutually indepen-
dent, ETPs are dependent, dependency is not known. The
phase based timing model views execution time as a prod-
uct of instruction count(IC) and CPI and estimates program
WCET in terms of phases instead of blocks, instructions,
segments or paths. We use probabilistic bounds on phase
CPI to compute WCET of a phase.

Edgar et al[21], Hansen et al[12] and Lu et al[24, 23] work
with end to end program execution time samples and try to
fit these samples into a Gumbel distribution using extreme
value theory (EVT). Once the parameters of the distribution
are computed, the estimate of WCET at various probabil-
ities is available. Our work neither assumes any probabil-
ity distribution of CPI samples nor tries to fit these sam-
ples into any distribution. We use Chebyshev’s inequality
that is applicable to any distribution, to compute bounds
on CPI. The precision of our results will definitely improve
if information regarding true probability distribution of CPI
samples is available.

7. CONCLUSIONS AND FUTURE WORK

The repetitive manner in which CPI varies in programs
exhibiting phase behavior can be used to reduce instrumen-
tation in WCET analysis of such programs We propose a
basic model in [8] that uses maximum of mean CPI observed
across inputs to estimate WCET. However, WCET esti-
mated thus, is approximate and has no probabilistic guar-
antees. In this paper, we extend this model to use prob-
abilistically bounded phase CPI. Using CPI bound along
with maximum IC results in a robust WCET that can be
estimated at the desired probability. The proposed method
assumes no probability distribution of CPI samples and uses
Chebyshev’s inequality to compute bounds of CPI. The ac-
curacy of CPI bound will certainly improve if the true prob-



ability distribution is known. Chebyshev’s inequality works
well with phases that exhibit low variance in CPI resulting
in tight CPI bounds and accurate WCET estimates (Ex-
amples: Fir(Archl), Jan(Arch2) and Lms(Archl)). Some
phases exhibit high variance in CPI. Applying Chebyshev’s
inequality for such phases results in pessimistic WCET es-
timates (Mat(Arch2)). To isolate points of high variation
in CPI, we refine such phases into smaller sub-phases based
on PC signatures collected using profiling. We observe the
following results for p=0.99. Refinement reduces pessimism
by 36%(77%) on Archl(Arch2). Using maximum observed
windows, accuracy in refined WCET estimate improves by
15%(149%) on an average compared to Chronos on Archl
(Arch2). Using theoretically bounded windows, accuracy in
refined WCET estimate improves by 5%(125%) on an aver-
age compared to Chronos on Archl(Arch2).

Refinement is designed to allow the user to control vari-
ance of CPI within a sub-phase, which is useful in programs
like Bubble sort wherein CPI varies throughout program exe-
cution and points of high variation of CPI cannot be isolated
based on PC signatures alone. We split a sub-phase into four
levels (CPI variance within the sub-phase is limited to 50%,
10%, 5% and 1% of average CPI variance of the sub-phase
obtained by refinement based on PC signature). Refining
Bubble sort (Archl1) at these four levels reduces pessimism
by 21%, 31%, 35% and 42% respectively.

Compared to Chronos, accuracy of WCET continues to
improve following refinement at each of these four levels
of CPI variance on Archi(by {20%, 21%, 23% and 24%}
using maximum observed windows and by {9%, 11%, 12%
and 13%} using theoretical maximum windows). On Arch2,
compared to Chronos, accuracy improves by refinement at
the first level(50%) by 192% (using maximum observed win-
dows) and 159% using theoretical maximum windows. The
improvement is marginal beyond the first level.

The process of collecting PC signatures through profil-
ing is completely independent of program phase detection
and classification. It would be interesting to see if PC sig-
natures can subsume program phase detection and classi-
fication. The amount of instrumentation in the proposed
method can be varied by modifying the window size de-
pending on the accuracy requirement and availability of re-
sources. Future work will analyze the impact of window size
on accuracy of WCET and evaluate the proposed method
on larger programs and more complex architectures.
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