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Consistency of surrogate risk minimization methods
for multiclass 0-1 classification

Lecturer: Shivani Agarwal Scribe: Debarghya Ghoshdastidar

1 Introduction

In the previous two lectures, we learned about consistency of surrogate risk minimization methods for binary
classification. In this lecture, we will study how the previous results extend to a multiclass setting. As
examples, we will study consistency of some multiclass SVM formulations.

We begin by describing how the surrogate risk minimization framework changes for multiclass classification.
This is shown in Table 1. For the purpose of this lecture, we will restrict ourselves to the multiclass 0-1 loss.

Binary classification Multiclass classification

Label space, Y and {±1} [n]
Prediction space, T
Target 0-1 loss `0-1 : {±1} × {±1} 7→ R+ `0-1 : [n]× [n] 7→ R+

`0-1 : Y × T 7→ R+ `0-1(y, t) = 1(t 6= y) `0-1(y, t) = 1(t 6= y)
Surrogate loss ψ : {±1} × C 7→ R+ ψ : [n]× C 7→ R+

ψ : Y × C 7→ R+ where C ⊆ R where C ⊆ Rn
‘pred’ function pred : C 7→ {±1} pred : C 7→ [n]
pred : C 7→ T pred(α) = sign(α) pred(u) = arg max

y∈[n]

uy

Conditional ψ-risk Lψ : [0, 1]× C 7→ R+ Lψ : ∆n × C 7→ R+

Lψ(η, α) = ηψ(1, α) + (1− η)ψ(−1, α) Lψ(p,u) =
n∑
y=1

pyψ(y,u)

Conditional Bayes ψ-risk Hψ : [0, 1] 7→ R+ Hψ : ∆n 7→ R+

Hψ(η) = inf
α∈C

Lψ(η, α) Hψ(p) = inf
u∈C

Lψ(p,u)

Conditional ψ-regret Rψ : [0, 1]× C 7→ R+ Rψ : ∆n × C 7→ R+

Rψ(η, α) = Lψ(η, α)−Hψ(η) Rψ(p,u) = Lψ(p,u)−Hψ(p)

Table 1: Surrogate risk minimization framework for binary and multiclass classification. We denote the yth

coordinate of vectors u and p by uy and py, respectively. Here, py = P(x ∈ Class y|x).

Example 1 (Multiclass logistic regression). The loss function in multiclass logistic regression is given by
the surrogate loss ψlog : [n]× Rn 7→ R+ defined as

ψlog(y,u) = − ln

 e−uy

n∑
y′=1

e−uy′

 ∀y ∈ [n] ∀u = (u1, . . . , un) ∈ Rn.

One can verify that minimizing ψlog is equivalent to maximizing the softmax function, which can be used as
parametric form for conditional class probability. It is also known that ψlog is a multiclass proper composite
loss [4].
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2 Consistency of surrogate risk minimization methods for multiclass 0-1 classification

2 Classification calibration in multiclass setting

We will now see how the definition of `0-1-calibrated loss function extends to the multiclass framework. We
can also state a result on multiclass `0-1-calibrated losses similar to the one in previous lecture. This is given
in Theorem 2.1.

Definition. For C ⊆ Rn, a surrogate loss function ψ : [n]× C 7→ Rn is said to be `0-1-calibrated if

∀p ∈ ∆n, inf
u∈C:pred(u)/∈arg min

t∈[n]

L0-1(p,t)
Lψ(p,u) > inf

u∈C
Lψ(p,u),

or equivalently,
∀p ∈ ∆n, inf

u∈C:R0-1(p,pred(u))>0
Rψ(p,u) > 0.

Theorem 2.1. Let C ⊆ Rn. Let ψ : [n] × C 7→ R+ be such that ψy(u) := ψ(y,u) is continuous ∀y ∈ [n].
Then the following are equivalent:

1. ψ is `0-1-calibrated.

2. for all distributions D on X × [n],

regretψD[fS ]
p−→ 0 =⇒ regret0-1

D [pred ◦ fS ]
p−→ 0.

3. ∃g : R+ 7→ R+ such that g is continuous at 0, g(0) = 0 and ∀D on X × [n], ∀f : X 7→ C,

regret0-1
D [pred ◦ f ] 6 g

(
regretψD[f ]

)
.

Proof. As in the previous lecture, we will skip the proof for (2) ⇒ (1), whereas (3) ⇒ (2) is obvious. For
the case of (1) ⇒ (3), we note that the proof is similar to the corresponding proof in previous lecture. The
key step in that proof was a result on positivity of the uniform calibration function. We will state and prove
a generalized version of that lemma, which can be directly applied to prove that (1) ⇒ (3) as in previous
lecture.

We restate the definition of calibration function in the multiclass setting.

Definition. The calibration function at p ∈ ∆n is the function δp : [0, 1] 7→ R+ defined as

δp(ε) = inf
u∈C:R0-1(p,pred(u))>ε

Rψ(p,u) .

The uniform calibration function δ : [0, 1] 7→ R+ is given by δ(ε) = inf
p∈∆n

δp(ε).

Note that δp(0) = 0 ∀p ∈ ∆n, and hence, δ(0) = 0. Also, from the definition of classification calibration, we
have that

ψ is `0-1-calibrated ⇐⇒ δp(ε) > 0 ∀ε > 0,∀p ∈ ∆n.

Hence, we can say that δ(ε) > 0 ∀ε > 0. We now state the result by Zhang [6], which guarantees positivity
of δ(ε) ∀ε > 0. Before proving this result, recall the following property of conditional Bayes risk.

Exercise. The function Hψ(p) is a continuous function of p on ∆n.

Lemma 2.2. Let ψ : [n]× C 7→ R+ be such that ψy(u) is continuous ∀y ∈ [n]. If ψ is `0-1-calibrated, then
δ(ε) > 0 ∀ε > 0.

Proof. Let ψ be `0-1-calibrated. We will prove the claim by contradiction.
Let, if possible, ∃ε > 0 such that δ(ε) = 0, i.e.,

inf
p∈∆n

inf
u∈C:R0-1(p,pred(u))>ε

Rψ(p,u) = 0.
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Note that Rψ(p,u) is continuous both in p and u. Hence, there exists a sequence
(
p(m),u(m)

)
m∈N in ∆n×C

such that

R0-1(p(m),pred(u(m))) > ε ∀m (1)

and lim
m→∞

Rψ(p(m),u(m)) = 0, i.e., lim
m→∞

(
Lψ(p(m),u(m))−Hψ(p(m))

)
= 0. (2)

Since ∆n is compact, ∃ a convergent subsequence of
(
p(m)

)
. Let p be the limit of that subsequence. We

will further work only with this subsequence, and so, for convenience, we denote the subsequence also by the
same index m, i.e., p(m) → p ∈ ∆n.
By continuity of Hψ, we have Hψ(p(m))→ Hψ(p) and so,

lim
m→∞

Lψ(p(m),u(m)) = Hψ(p). (3)

Assume without loss of generality that p = (p1, . . . , pn) is such that py = 0 for y = 1, . . . , k and py > 0 for
y = k + 1, . . . , n. We have

lim sup
m→∞

Lψ(p,u(m)) = lim sup
m→∞

n∑
y=k+1

pyψy(u(m))

= lim sup
m→∞

n∑
y=k+1

p(m)
y ψy(u(m)) (since p(m) → p)

6 lim sup
m→∞

n∑
y=1

p(m)
y ψy(u(m))

= lim
m→∞

Lψ(p(m),u(m)) = Hψ(p) (from Eq. (3)).

On the other hand, from definition of Hψ(p), it follows that

lim inf
m→∞

Lψ(p,u(m)) > Hψ(p).

Hence, lim
m→∞

Lψ(p,u(m)) = Hψ(p), i.e., lim
m→∞

Rψ(p,u(m)) = 0.

But from Eq. (1) and the fact p(m) → p, we can derive that

R0-1(p,pred(u(m))) > ε ∀m.

Thus, we have δp(ε) = inf
u∈C:R0-1(p,pred(u))>ε

Rψ(p,u) = 0, which contradicts the fact that ε > 0.

Hence, the claim is proved.

In the above results (Theorem 2.1 and Lemma 2.2), the assumption on continuity of ψy will not be required
if the loss is a margin based binary loss. This follows from the exact expression that can be obtained for
margin based losses (as discussed in the previous lecture).

Exercise. We have proved Theorem 2.1 and Lemma 2.2 based on the assumption that Y = T = [n] is finite.
Identify which of the statements in the proofs make use of this assumption. Can we modify the proofs such
that the results hold for Y = T = [0, 1]?

3 Consistency of some multiclass SVM formulations

Theorem 2.1 can be used to study consistency of different surrogate risk minimization methods for multiclass
0-1 classification. In particular, we may study consistency of various multiclass formulations for SVM that
have been proposed in the literature [5, 1, 2]. This has been studied in [6]. In all the multiclass SVM
formulations, a multiclass extension of the hinge loss is minimized. However, one may consider any margin
function φ in general as used below. In particular, φ(z) = (1 − z)+ would correspond to the algorithms
in [5, 1, 2].
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3.1 Formulation by Weston & Watkins [5]

C = Rn and surrogate loss ψWW : [n]× Rn 7→ R+ is

ψWW (y,u) =
∑
y′ 6=y

φ(uy − uy′) for some φ : R 7→ R+

Theorem 3.1. Let φ be a decreasing function that is differentiable everywhere and φ′(0) < 0. Then ψWW

is `0-1-calibrated.

Though the above includes exponential and logistic losses, it does not include the hinge loss. In fact Zhang [6]
showed a counter-example in case of hinge loss. Thus ψWW with the hinge loss is not `0-1-calibrated.

3.2 Formulation by Crammer & Singer [1]

C = Rn and surrogate loss ψCS : [n]× Rn 7→ R+ is

ψCS(y,u) = φ

(
uy −max

y′ 6=y
uy′

)
for some φ : R 7→ R+

This formulation is popularly used in structured prediction. However, for convex φ, in general ψCS is not
`0-1-calibrated.

3.3 Formulation by Lee, Lin & Wahba [2]

C =
{

u ∈ Rn :
∑n
y=1 uy = 0

}
and surrogate loss ψLLW : [n]× C 7→ R+ is

ψLLW (y,u) =
∑
y′ 6=y

φ(−uy′) for some φ : R 7→ R+

Theorem 3.2. Let φ be a convex function that is differentiable on (−∞, 0] and φ′(0) < 0. Then ψLLW is
`0-1-calibrated.

This result includes the hinge loss, and therefore this yields a universally consistent formulation of multiclass
SVMs.

3.4 Formulation using one vs. all approach

C = Rn and surrogate loss ψOvA : [n]× Rn 7→ R+ is

ψOvA(y,u) = φ(uy) +
∑
y′ 6=y

φ(−uy′) for some φ : R 7→ R+

Exercise. Show that one vs. all approach effectively minimizes the above loss on the training sample.

Theorem 3.3. Let φ be a convex function that is differentiable everywhere and φ(z) < φ(−z) ∀z > 0. Then
ψOvA is `0-1-calibrated.

This result also does not hold for the hinge loss.
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4 Consistency over a class of distributions

The above discussion shows that most of the multiclass SVM formulations (in Sections 3.1,3.2 and 3.4) are
not consistent. However, in practice, they are found to perform quite well. This is due to the fact that
these losses are `0-1-calibrated under certain conditions on the underlying distributions. This can formalized
through the following definition.

Definition. For P ⊆ ∆n and C ⊆ Rn, a surrogate loss function ψ : [n]×C 7→ Rn is said to be `0-1-calibrated
over P if

∀p ∈ P, inf
u∈C:R0-1(p,pred(u))>0

Rψ(p,u) > 0.

Based on this definition, we can redefine the calibration and uniform calibration functions. The statement
of Theorem 2.1 holds for all distributions D on X × [n] such that Dy|x ∈ P, i.e., we do not get universal
consistency, but consistency on P. In Sections 3.1,3.2 and 3.4, the formulation with hinge loss is consistent

over P =

{
p ∈ ∆n : max

y∈[n]
py >

1

2

}
, i.e., when one of the classes strictly dominates over others.

5 Additional pointers

Most of the results discussed in this lecture can be found in [6]. An alternative approach was studied in
[3] using geometric interpretations. The authors of this paper also study if consistency is possible when
the ‘pred’ function is not of ‘argmax’ type. One of their observations is that if ψ : [n] × C 7→ R+ is a
symmetric surrogate loss, then it suffices to show only the 0-1 calibration for argmax pred function. Here,
the term ‘symmetric’ loss means that for all u ∈ C and permutations σ : [n] → [n], ∃u′ ∈ C such that
ψ(σ(y),u) = ψ(y,u′)∀y ∈ [n].

We had seen in last class that better bounds are achieved using classification calibration than using proper
losses. This apparently seems counter-intuitive as stronger assumptions are used in the latter case. However,
in case of proper losses, we tried to estimate distribution (given by η) which implied that we tried to learn
more than just the classes of data. Hence, the bounds were looser than the case of classification calibration,
where we try to achieve consistency only with respect to problem of learning the classes. In fact, it is known
that the classification calibration based bounds are the tightest in the distribution-free setting.
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