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Abstract

The design of convex, calibrated surrogate losses, whose minimization entails
consistency with respect to a desired target loss, is an important concept to have
emerged in the theory of machine learning in recent years. We give an explicit
construction of a convex least-squares type surrogate loss that can be designed to
be calibrated for any multiclass learning problem for which the target loss matrix
has a low-rank structure; the surrogate loss operates on a surrogate target space
of dimension at most the rank of the target loss. We use this result to design
convex calibrated surrogates for a variety of subset ranking problems, with target
losses including the precision@q, expected rank utility, mean average precision,
and pairwise disagreement.

1 Introduction

There has been much interest in recent years in understanding consistency properties of learning
algorithms – particularly algorithms that minimize a surrogate loss – for a variety of finite-output
learning problems, including binary classification, multiclass classification, multi-label classifica-
tion, subset ranking, and others [1–17]. For algorithms minimizing a surrogate loss, the question
of consistency reduces to the question of calibration of the surrogate loss with respect to the target
loss of interest [5–7, 16]; in general, one is interested in convex surrogates that can be minimized
efficiently. In particular, the existence (and lack thereof) of convex calibrated surrogates for various
subset ranking problems, with target losses including for example the discounted cumulative gain
(DCG), mean average precision (MAP), mean reciprocal rank (MRR), and pairwise disagreement
(PD), has received significant attention recently [9, 11–13, 15–17].

In this paper, we develop a general result which allows us to give an explicit convex, calibrated
surrogate defined on a low-dimensional surrogate space for any finite-output learning problem for
which the loss matrix has low rank. Recently, Ramaswamy and Agarwal [16] showed the existence
of such surrogates, but their result involved an unwieldy surrogate space, and moreover did not give
an explicit, usable construction for the mapping needed to transform predictions in the surrogate
space back to the original prediction space. Working in the same general setting as theirs, we give
an explicit construction that leads to a simple least-squares type surrogate. We then apply this
result to obtain several new results related to subset ranking. Specifically, we first obtain calibrated,
score-based surrogates for the Precision@q loss, which includes the winner-take-all (WTA) loss as
a special case, and the expected rank utility (ERU) loss; to the best of our knowledge, consistency
with respect to these losses has not been studied previously in the literature. When there are r
documents to be ranked for each query, the score-based surrogates operate on an r-dimensional
surrogate space. We then turn to the MAP and PD losses, which are both widely used in practice, and
for which it has been shown that no convex score-based surrogate can be calibrated for all probability
distributions [11,15,16]. For the PD loss, Duchi et al. [11] gave certain low-noise conditions on the
probability distribution under which a convex, calibrated score-based surrogate could be designed;
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we are unaware of such a result for the MAP loss. A straightforward application of our low-rank
result to these losses yields convex calibrated surrogates defined on O(r2)-dimensional surrogate
spaces, but in both cases, the mapping needed to transform back to predictions in the original space
involves solving a computationally hard problem. Inspired by these surrogates, we then give a
convex score-based surrogate with an efficient mapping that is calibrated with respect to MAP under
certain conditions on the probability distribution; this is the first such result for the MAP loss that
we are aware of. We also give a family of convex score-based surrogates calibrated with the PD
loss under certain noise conditions, generalizing the surrogate and conditions of Duchi et al. [11].
Finally, we give an efficient mapping for theO(r2)-dimensional surrogate for the PD loss, and show
that this leads to a convex surrogate calibrated with the PD loss under a more general condition, i.e.
over a larger set of probability distributions, than those associated with the score-based surrogates.

Paper outline. We start with some preliminaries and background in Section 2. Section 3 gives our
primary result, namely an explicit convex surrogate calibrated for low-rank loss matrices, defined on
a surrogate space of dimension at most the rank of the matrix. Sections 4–7 then give applications
of this result to the Precision@q, ERU, MAP, and PD losses, respectively. All proofs not included
in the main text can be found in the appendix.

2 Preliminaries and Background
Setup. We work in the same general setting as that of Ramaswamy and Agarwal [16]. There is an
instance space X , a finite set of class labels Y = [n] = {1, . . . , n}, and a finite set of target labels
(possible predictions) T = [k] = {1, . . . , k}. Given training examples (X1, Y1), . . . , (Xm, Ym)
drawn i.i.d. from a distributionD onX×Y , the goal is to learn a prediction model h : X→T . Often,
T = Y , but this is not always the case (for example, in the subset ranking problems we consider,
the labels in Y are typically relevance vectors or preference graphs over a set of r documents, while
the target labels in T are permutations over the r documents). The performance of a prediction
model h : X→T is measured via a loss function ` : Y ×T →R+ (where R+ = [0,∞)); here `(y, t)
denotes the loss incurred on predicting t ∈ T when the label is y ∈ Y . Specifically, the goal is
to learn a model h with low expected loss or `-error er`D[h] = E(X,Y )∼D[`(Y, h(X))]; ideally, one
wants the `-error of the learned model to be close to the optimal `-error er`,∗D = infh:X→T er`D[h].
An algorithm which when given a random training sample as above produces a (random) model
hm : X→T is said to be consistent w.r.t. ` if the `-error of the learned model hm converges in
probability to the optimal: er`D[hm]

P−→ er`,∗D .1

Typically, minimizing the discrete `-error directly is computationally difficult; therefore one uses
instead a surrogate loss function ψ : Y ×Rd→R̄+ (where R̄+ = [0,∞]), defined on the continuous
surrogate target space Rd for some d ∈ Z+ instead of the discrete target space T , and learns a
model f : X→Rd by minimizing (approximately, based on the training sample) the ψ-error erψD[f ] =
E(X,Y )∼D[ψ(Y, f(X))]. Predictions on new instances x ∈ X are then made by applying the learned
model f and mapping back to predictions in the target space T via some mapping pred : Rd→T ,
giving h(x) = pred(f(x)). Under suitable conditions, algorithms that approximately minimize the
ψ-error based on a training sample are known to be consistent with respect to ψ, i.e. to converge in
probability to the optimal ψ-error erψ,∗D = inff :X→Rd erψD[f ]. A desirable property of ψ is that it be
calibrated w.r.t. `, in which case consistency w.r.t. ψ also guarantees consistency w.r.t. `; we give a
formal definition of calibration and statement of this result below.

In what follows, we will denote by ∆n the probability simplex in Rn: ∆n = {p ∈ Rn+ :
∑
i pi = 1}.

For z ∈ R, let (z)+ = max(z, 0). We will find it convenient to view the loss function ` : Y×T →R+

as an n × k matrix with elements `yt = `(y, t) for y ∈ [n], t ∈ [k], and column vectors `t =
(`1t, . . . , `nt)

> ∈ Rn+ for t ∈ [k]. We will also represent the surrogate loss ψ : Y × Rd→R̄+

as a vector function ψ : Rd→R̄n+ with ψy(u) = ψ(y,u) for y ∈ [n],u ∈ Rd, and ψ(u) =

(ψ1(u), . . . , ψn(u))> ∈ R̄n+ for u ∈ Rd.
Definition 1 (Calibration). Let ` : Y ×T →R+ and let P ⊆ ∆n. A surrogate loss ψ : Y ×Rd→R̄+

is said to be calibrated w.r.t. ` over P if there exists a function pred : Rd→T such that
∀p ∈ P : inf

u∈Rd:pred(u)/∈argmintp>`t
p>ψ(u) > inf

u∈Rd
p>ψ(u) .

1Here P−→ denotes convergence in probability: Xm
P−→ a if ∀ε > 0, P(|Xm − a| ≥ ε)→ 0 as m→∞.
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In this case we also say (ψ, pred) is (`,P)-calibrated, or if P = ∆n, simply `-calibrated.

Theorem 2 ( [6, 7, 16]). Let ` : Y × T →R+ and ψ : Y × Rd→R̄+. Then ψ is calibrated w.r.t. `
over ∆n iff ∃ a function pred : Rd→T such that for all distributions D on X ×Y and all sequences
of random (vector) functions fm : X→Rd (depending on (X1, Y1), . . . , (Xm, Ym)),

erψD[fm]
P−→ erψ,∗D implies er`D[pred ◦ fm]

P−→ er`,∗D .

For any instance x ∈ X , let p(x) ∈ ∆n denote the conditional label probability vector at x, given by
p(x) = (p1(x), . . . , pn(x))> where py(x) = P(Y = y |X = x). Then one can extend the above
result to show that for P ⊂ ∆n, ψ is calibrated w.r.t. ` over P iff ∃ a function pred : Rd→T such
that the above implication holds for all distributions D on X × Y for which p(x) ∈ P ∀x ∈ X .

Subset ranking. Subset ranking problems arise frequently in information retrieval applications.
In a subset ranking problem, each instance in X consists of a query together with a set of say
r documents to be ranked. The label space Y varies from problem to problem: in some cases,
labels consist of binary or multi-level relevance judgements for the r documents, in which case
Y = {0, 1}r or Y = {0, 1, . . . , s}r for some appropriate s ∈ Z+; in other cases, labels consist
of pairwise preference graphs over the r documents, represented as (possibly weighted) directed
acyclic graphs (DAGs) over r nodes. Given examples of such instance-label pairs, the goal is to
learn a model to rank documents for new queries/instances; in most cases, the desired ranking takes
the form of a permutation over the r documents, so that T = Sr (where Sr denotes the group of
permutations on r objects). As noted earlier, various loss functions are used in practice, and there
has been much interest in understanding questions of consistency and calibration for these losses in
recent years [9–15, 17]. The focus so far has mostly been on designing r-dimensional surrogates,
which operate on a surrogate target space of dimension d = r; these are also termed ‘score-based’
surrogates since the resulting algorithms can be viewed as learning one real-valued score function
for each of the r documents, and in this case the pred mapping usually consists of simply sorting
the documents according to these scores. Below we will apply our result on calibrated surrogates
for low-rank loss matrices to obtain new calibrated surrogates – both r-dimensional, score-based
surrogates and, in some cases, higher-dimensional surrogates – for several subset ranking losses.

3 Calibrated Surrogates for Low Rank Loss Matrices

The following is the primary result of our paper. The result gives an explicit construction for a
convex, calibrated, least-squares type surrogate loss defined on a low-dimensional surrogate space
for any target loss matrix that has a low-rank structure.

Theorem 3. Let ` : Y × T →R+ be a loss function such that there exist d ∈ Z+, vectors
α1, . . . ,αn ∈ Rd, β1, . . . ,βk ∈ Rd and c ∈ R such that

`(y, t) =

d∑
i=1

αyiβti + c .

Let ψ∗` : Y × Rd→R̄+ be defined as

ψ∗` (y,u) =

d∑
i=1

(ui − αyi)2

and let pred∗` : Rd→T be defined as

pred∗` (u) ∈ argmint∈[k]u
>βt .

Then
(
ψ∗` , pred∗`

)
is `-calibrated.

Proof. Let p ∈ ∆n. Define up ∈ Rd as upi =
∑n
y=1 pyαyi ∀i ∈ [d]. Now for any u ∈ Rd, we have

p>ψ∗` (u) =

d∑
i=1

n∑
y=1

py(ui − αyi)2 .

Minimizing this over u ∈ Rd yields that up is the unique minimizer of p>ψ∗` (u). Also, for any
t ∈ [k], we have
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p>`t =

n∑
y=1

py

( d∑
i=1

αyiβti + c
)

= (up)>βt + c .

Now, for each t ∈ [k], define

regret`p(t)
4
= p>`t − min

t′∈[k]
p>`t′ = (up)>βt − min

t′∈[k]
(up)>βt′ .

Clearly, by definition of pred∗` , we have regret`p(pred∗` (u
p)) = 0. Also, if regret`p(t) = 0 for all

t ∈ [k], then trivially pred∗` (u) ∈ argmintp
>`t ∀u ∈ Rd (and there is nothing to prove in this case).

Therefore assume ∃t ∈ [k] : regret`p(t) > 0, and let
ε = min

t∈[k]:regret`p(t)>0
regret`p(t) .

Then we have
inf

u∈Rd:pred∗` (u)/∈argmintp>`t
p>ψ∗` (u) = inf

u∈Rd:regret`p(pred∗` (u))≥ε
p>ψ∗` (u)

= inf
u∈Rd:regret`p(pred∗` (u))≥regret`p(pred∗` (up))+ε

p>ψ∗` (u) .

Now, we claim that the mapping u 7→ regret`p(pred∗` (u)) is continuous at u = up. To see this,
suppose the sequence {um} converges to up. Then we have

regret`p(pred∗` (um)) = (up)>βpred∗` (um) − min
t′∈[k]

(up)>βt′

= (up − um)>βpred∗` (um) + u>mβpred∗` (um) − min
t′∈[k]

(up)>βt′

= (up − um)>βpred∗` (um) + min
t′∈[k]

u>mβt′ − min
t′∈[k]

(up)>βt′

The last equality holds by definition of pred∗` . It is easy to see the term on the right goes to zero
as um converges to up. Thus regret`p(pred∗` (um)) converges to regret`p(pred∗` (u

p)) = 0, yielding
continuity at up. In particular, this implies ∃δ > 0 such that

‖u− up‖ < δ =⇒ regret`p(pred∗` (u))− regret`p(pred∗` (u
p)) < ε .

This gives
inf

u∈Rd:regret`p(pred∗` (u))≥regret`p(pred∗` (up))+ε
p>ψ∗` (u) ≥ inf

u∈Rd:‖u−up‖≥δ
p>ψ∗` (u)

> inf
u∈Rd

p>ψ∗` (u) ,

where the last inequality holds since p>ψ∗` (u) is a strictly convex function of u and up is its unique
minimizer. The above sequence of inequalities give us that

inf
u∈Rd:pred∗` (u)/∈argmintp>`t

p>ψ∗` (u) > inf
u∈Rd

p>ψ∗` (u) .

Since this holds for all p ∈ ∆n, we have that (ψ∗` , pred∗` ) is `-calibrated.

We note that Ramaswamy and Agarwal [16] showed a similar least-squares type surrogate calibrated
for any loss ` : Y × T →R+; indeed our proof technique above draws inspiration from the proof
technique there. However, the surrogate they gave was defined on a surrogate space of dimension
n−1, where n is the number of class labels in Y . For many practical problems, this is an intractably
large number. For example, as noted above, in the subset ranking problems we consider, the number
of class labels is typically exponential in r, the number of documents associated with each query.
On the other hand, as we will see below, many subset ranking losses have a low-rank structure,
with rank linear or quadratic in r, allowing us to use the above result to design convex calibrated
surrogates on an O(r) or O(r2)-dimensional space. Ramaswamy and Agarwal also gave another
result in which they showed that any loss matrix of rank d has a d-dimensional convex calibrated
surrogate; however the surrogate there was defined such that it took values < ∞ on an awkward
space in Rd (not the full space Rd) that would be difficult to construct in practice, and moreover,
their result did not yield an explicit construction for the pred mapping required to use a calibrated
surrogate in practice. Our result above combines the benefits of both these previous results, allowing
explicit construction of low-dimensional least-squares type surrogates for any low-rank loss matrix.
The following sections will illustrate several applications of this result.
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4 Calibrated Surrogates for Precision@q

The Precision@q is a popular performance measure for subset ranking problems in information
retrieval. As noted above, in a subset ranking problem, each instance in X consists of a query
together with a set of r documents to be ranked. Consider a setting with binary relevance judgement
labels, so that Y = {0, 1}r with n = 2r. The prediction space is T = Sr (group of permutations on
r objects) with k = r!. For y ∈ {0, 1}r and σ ∈ Sr, where σ(i) denotes the position of document i
under σ, the Precision@q loss for any integer q ∈ [r] can be written as follows:

`P@q(y, σ) = 1− 1

q

q∑
i=1

yσ−1(i)

= 1− 1

q

r∑
i=1

yi · 1(σ(i) ≤ q) .

Therefore, by Theorem 3, for the r-dimensional surrogate ψ∗P@q : {0, 1}r ×Rr→R̄+ and pred∗P@q :
Rr→Sr defined as

ψ∗P@q(y,u) =

r∑
i=1

(ui − yi)2

pred∗P@q(u) ∈ argmaxσ∈Sr

r∑
i=1

ui · 1(σ(i) ≤ q) ,

we have that (ψ∗P@q, pred∗P@q) is `P@q-calibrated. It can easily be seen that for any u ∈ Rr, any
permutation σ which places the top q documents sorted in decreasing order of scores ui in the top
q positions achieves the maximum in pred∗P@q(u); thus pred∗P@q(u) can be implemented efficiently
using a standard sorting or selection algorithm. Note that the popular winner-take-all (WTA) loss,
which assigns a loss of 0 if the top-ranked item is relevant (i.e. if yσ−1(1) = 1) and 1 otherwise,
is simply a special case of the above loss with q = 1; therefore the above construction also yields
a calibrated surrogate for the WTA loss. To our knowledge, this is the first example of convex,
calibrated surrogates for the Precision@q and WTA losses.

5 Calibrated Surrogates for Expected Rank Utility
The expected rank utility (ERU) is a popular subset ranking performance measure used in recom-
mender systems displaying short ranked lists [18]. In this case the labels consist of multi-level
relevance judgements (such as 0 to 5 stars), so that Y = {0, 1, . . . , s}r for some appropriate s ∈ Z+

with n = (s + 1)r. The prediction space again is T = Sr with k = r!. For y ∈ {0, 1, . . . , s}r and
σ ∈ Sr, where σ(i) denotes the position of document i under σ, the ERU loss is defined as

`ERU(y, σ) = z −
r∑
i=1

max(yi − v, 0) · 2
1−σ(i)
w−1 ,

where z is a constant to ensure the positivity of the loss, v ∈ [s] is a constant that indicates a
neutral score, and w ∈ R is a constant indicating the viewing half-life. Thus, by Theorem 3, for the
r-dimensional surrogate ψ∗ERU : {0, 1, . . . , s}r × Rr→R̄+ and pred∗ERU : Rr→Sr defined as

ψ∗ERU(y,u) =

r∑
i=1

(ui −max(yi − v, 0))2

pred∗ERU(u) ∈ argmaxσ∈Sr

r∑
i=1

ui · 2
1−σ(i)
w−1 ,

we have that (ψ∗ERU, pred∗ERU) is `ERU-calibrated. It can easily be seen that for any u ∈ Rr, any
permutation σ satisfying the condition

ui > uj =⇒ σ(i) < σ(j)

achieves the maximum in pred∗ERU(u), and therefore pred∗ERU(u) can be implemented efficiently
by simply sorting the r documents in decreasing order of scores ui. As for Precision@q, to our
knowledge, this is the first example of a convex, calibrated surrogate for the ERU loss.
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6 Calibrated Surrogates for Mean Average Precision
The mean average precision (MAP) is a widely used ranking performance measure in information
retrieval and related applications [15, 19]. As with the Precision@q loss, Y = {0, 1}r and T = Sr.
For y ∈ {0, 1}r and σ ∈ Sr, where σ(i) denotes the position of document i under σ, the MAP loss
is defined as follows:

`MAP(y, σ) = 1− 1

|{γ : yγ = 1}|
∑
i:yi=1

1

σ(i)

σ(i)∑
j=1

yσ−1(j) .

It was recently shown that there cannot exist any r-dimensional convex, calibrated surrogates for
the MAP loss [15]. We now re-write the MAP loss above in a manner that allows us to show the
existence of an O(r2)-dimensional convex, calibrated surrogate. In particular, we can write

`MAP(y, σ) = 1− 1∑r
γ=1 yγ

r∑
i=1

i∑
j=1

yσ−1(i)yσ−1(j)

i
. = 1− 1∑r

γ=1 yγ

r∑
i=1

i∑
j=1

yiyj
max(σ(i), σ(j))

Thus, by Theorem 3, for the r(r+1)
2 -dimensional surrogate ψ∗MAP : {0, 1}r × Rr(r+1)/2→R̄+ and

pred∗MAP : Rr(r+1)/2→Sr defined as

ψ∗MAP(y,u) =

r∑
i=1

i∑
j=1

(
uij −

yiyj∑r
γ=1 yγ

)2

pred∗MAP(u) ∈ argmaxσ∈Sr

r∑
i=1

i∑
j=1

uij ·
1

max(σ(i), σ(j))
,

we have that (ψ∗MAP, pred∗MAP) is `MAP-calibrated.

Note however that the optimization problem associated with computing pred∗MAP(u) above can be
written as a quadratic assignment problem (QAP), and most QAPs are known to be NP-hard. We
conjecture that the QAP associated with the mapping pred∗MAP above is also NP-hard. Therefore,
while the surrogate loss ψ∗MAP is calibrated for `MAP and can be minimized efficiently over a training
sample to learn a model f : X→Rr(r+1)/2, for large r, evaluating the mapping required to transform
predictions in Rr(r+1)/2 back to predictions in Sr is likely to be computationally infeasible. Below
we describe an alternate mapping in place of pred∗MAP which can be computed efficiently, and show
that under certain conditions on the probability distribution, the surrogate ψ∗MAP together with this
mapping is still calibrated for `MAP.

Specifically, define predMAP : Rr(r+1)/2→Sr as follows:

predMAP(u) ∈
{
σ ∈ Sr : uii > ujj =⇒ σ(i) < σ(j)

}
.

Clearly, predMAP(u) can be implemented efficiently by simply sorting the ‘diagonal’ elements uii
for i ∈ [r]. Also, let ∆Y denote the probability simplex over Y , and for each p ∈ ∆Y , define
up ∈ Rr(r+1)/2 as follows:

upij = EY∼p

[
YiYj∑r
γ=1 Yγ

]
=
∑
y∈Y

py

(
yiyj∑r
γ=1 yγ

)
∀i, j ∈ [r] : i ≥ j .

Now define Preinforce ⊂ ∆Y as follows:

Preinforce =
{
p ∈ ∆Y : upii ≥ u

p
jj =⇒ upii ≥ upjj +

∑
γ∈[r]\{i,j}

(upjγ − u
p
iγ)+

}
,

where we set upij = upji for i < j. Then we have the following result:

Theorem 4. (ψ∗MAP, predMAP) is (`MAP,Preinforce)-calibrated.

The ideal predictor pred∗MAP uses the entire u matrix, but the predictor predMAP, uses only the diag-
onal elements. The noise conditions Preinforce can be viewed as basically enforcing that the diagonal
elements dominate and enforce a clear ordering themselves.

In fact, since the mapping predMAP depends on only the diagonal elements of u, we can equivalently
define an r-dimensional surrogate that is calibrated w.r.t. `MAP over Preinforce. Specifically, we have
the following immediate corollary:
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Corollary 5. Let ψ̃MAP : {0, 1}r × Rr→R̄+ and p̃redMAP : Rr→Sr be defined as

ψ̃MAP(y, ũ) =

r∑
i=1

(
ũi −

yi∑r
γ=1 yγ

)2

p̃redMAP(ũ) ∈
{
σ ∈ Sr : ũi > ũj =⇒ σ(i) < σ(j)

}
.

Then (ψ̃MAP, p̃redMAP) is (`MAP,Preinforce)-calibrated.

Looking at the form of ψ̃MAP and p̃redMAP, we can see that the function s : Y→Rr defined as
si(y) = yi/(

∑r
γ=1 yr) is a ‘standardization function’ for the MAP loss over Preinforce, and therefore

it follows that any ‘order-preserving surrogate’ with this standardization function is also calibrated
with the MAP loss over Preinforce [13]. To our knowledge, this is the first example of conditions on
the probability distribution under which a convex calibrated (and moreover, score-based) surrogate
can be designed for the MAP loss.

7 Calibrated Surrogates for Pairwise Disagreement
The pairwise disagreement (PD) loss is a natural and widely used loss in subset ranking [11, 17].
The label space Y here consists of a finite number of (possibly weighted) directed acyclic graphs
(DAGs) over r nodes; we can represent each such label as a vector y ∈ Rr(r−1)

+ where at least one
of yij or yji is 0 for each i 6= j, with yij > 0 indicating a preference for document i over document
j and yij denoting the weight of the preference. The prediction space as usual is T = Sr with
k = r!. For y ∈ Y and σ ∈ Sr, where σ(i) denotes the position of document i under σ, the PD loss
is defined as follows:

`PD(y, σ) =

r∑
i=1

∑
j 6=i

yij 1
(
σ(i) > σ(j)

)
.

It was recently shown that there cannot exist any r-dimensional convex, calibrated surrogates for the
PD loss [15, 16]. By Theorem 3, for the r(r − 1)-dimensional surrogate ψ∗PD : Y × Rr(r−1)→R̄+

and pred∗PD : Rr(r−1)→Sr defined as

ψ∗PD(y,u) =

r∑
i=1

∑
j 6=i

(uij − yij)2 (1)

pred∗PD(u) ∈ argminσ∈Sr

r∑
i=1

∑
j 6=i

uij · 1
(
σ(i) > σ(j)

)
we immediately have that (ψ∗PD, pred∗PD) is `PD-calibrated (in fact the loss matrix `PD has rank at most
r(r−1)

2 , allowing for an r(r−1)
2 -dimensional surrogate; we use r(r−1) dimensions for convenience).

In this case, the optimization problem associated with computing pred∗PD(u) above is a minimum
weighted feedback arc set (MWFAS) problem, which is known to be NP-hard. Therefore, as with the
MAP loss, while the surrogate loss ψ∗PD is calibrated for `PD and can be minimized efficiently over
a training sample to learn a model f : X→Rr(r−1), for large r, evaluating the mapping required to
transform predictions in Rr(r−1) back to predictions in Sr is likely to be computationally infeasible.

Below we give two sets of results. In Section 7.1, we give a family of score-based (r-dimensional)
surrogates that are calibrated with the PD loss under different conditions on the probability distri-
bution; these surrogates and conditions generalize those of Duchi et al. [11]. In Section 7.2, we
give a different condition on the probability distribution under which we can actually avoid ‘diffi-
cult’ graphs being passed to pred∗PD. This condition is more general (i.e. encompasses a larger set
of probability distributions) than those associated with the score-based surrogates; this gives a new
(non-score-based, r(r−1)-dimensional) surrogate with an efficiently computable pred mapping that
is calibrated with the PD loss over a larger set of probability distributions than previous surrogates
for this loss.

7.1 Family of r-Dimensional Surrogates Calibrated with `PD Under Noise Conditions

The following gives a family of score-based surrogates, parameterized by functions f : Y→Rr, that
are calibrated with the PD loss under different conditions on the probability distribution:

7



Theorem 6. Let f : Y→Rr be any function that maps DAGs y ∈ Y to score vectors f(y) ∈ Rr. Let
ψf : Y × Rr→R̄+, pred : Rr→Sr and Pf ⊂ ∆Y be defined as

ψf (y,u) =

r∑
i=1

(
ui − fi(y)

)2
pred(u) ∈

{
σ ∈ Sr : ui > uj =⇒ σ(i) < σ(j)

}
Pf =

{
p ∈ ∆Y : EY∼p[Yij ] > EY∼p[Yji] =⇒ EY∼p[fi(Y )] > EY∼p[fj(Y )]

}
.

Then (ψf , pred) is (`PD,Pf )-calibrated.

The noise conditions Pf state that the expected value of function f must decide the ‘right’ ordering.
We note that the surrogate given by Duchi et al. [11] can be written in our notation as

ψDMJ(y,u) =

r∑
i=1

∑
j 6=i

yij(uj − ui) + ν

r∑
i=1

λ(ui) ,

where λ is a strictly convex and 1-coercive function and ν > 0. Taking λ(z) = z2 and ν = 1
2 gives

a special case of the family of score-based surrogates in Theorem 6 above obtained by taking f as
fi(y) =

∑
j 6=i

(yij − yji) .

Indeed, the set of noise conditions under which the surrogate ψDMJ is shown to be calibrated with
the PD loss in Duchi et al. [11] is exactly the set Pf above with this choice of f . We also note that f
can be viewed as a ‘standardization function’ [13] for the PD loss over Pf .

7.2 An O(r2)-dimensional Surrogate Calibrated with `PD Under More General Conditions

Consider now the r(r − 1)-dimensional surrogate ψ∗PD : Y × Rr(r−1) defined in Eq. (1). We noted
the corresponding mapping pred∗PD involved an NP-hard optimization problem. Here we give an
alternate mapping predPD : Rr(r−1)→Sr that can be computed efficiently, and show that under
certain conditions on the probability distribution , the surrogate ψ∗PD together with this mapping
predPD is calibrated for `PD. The mapping predPD is described by Algorithm 1 below:

Algorithm 1 predPD (Input: u ∈ Rr(r−1); Output: Permutation σ ∈ Sr)
Construct a directed graph over [r] with edge (i, j) having weight (uij − uji)+. If this graph is
acyclic, return any topological sorted order. If the graph has cycles, sort the edges in ascending
order by weight and delete them one by one (smallest weight first) until the graph becomes acyclic;
return any topological sorted order of the resulting acyclic graph.

For each p ∈ ∆Y , define Ep = {(i, j) ∈ [r]× [r] : EY∼p[Yij ] > EY∼p[Yji]}, and define

PDAG =
{
p ∈ ∆Y :

(
[r], Ep

)
is a DAG

}
.

Then we have the following result:
Theorem 7. (ψ∗PD, predPD) is (`PD,PDAG)-calibrated.

It is easy to see that PDAG ) Pf ∀f (where Pf is as defined in Theorem 6), so that the above result
yields a low-dimensional, convex surrogate with an efficiently computable pred mapping that is
calibrated for the PD loss under a broader set of conditions than the previous surrogates.

8 Conclusion
Calibration of surrogate losses is an important property in designing consistent learning algorithms.
We have given an explicit method for constructing calibrated surrogates for any learning problem
with a low-rank loss structure, and have used this to obtain several new results for subset ranking,
including new calibrated surrogates for the Precision@q, ERU, MAP and PD losses.
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Matrices with Applications to Subset Ranking Losses

Appendix

Proof of Theorem 4

Proof. Let p ∈ Preinforce. We define up ∈ Rr(r+1)/2 again here for convenience:

upij = EY∼p

[
YiYj∑r
γ=1 Yγ

]
=
∑
y∈Y

py

(
yiyj∑r
γ=1 yγ

)
∀i, j ∈ [r] : i ≥ j .

It is easy to see that up ∈ Rr(r+1)/2 is the unique minimizer of p>ψ∗MAP(u) over u ∈ Rr(r+1)/2.

Recall also that while upij above is defined only for i ≥ j, we also set upij = upji for i < j.

For brevity, we will write `MAP as ` below. We have from the definition of the MAP loss,

p>`σ = 1−
r∑
i=1

i∑
j=1

upij
1

max(σ(i), σ(j))

= 1−
r∑
i=1

1

i

i∑
j=1

upσ−1(i)σ−1(j) . (2)

Now define the following sets:
Π∗(p) = argminσ∈Srp

>`σ

Π(p) =
{
σ ∈ Sr : upii > upjj =⇒ σ(i) < σ(j)

}
.

From Lemma 8 below, we have that Π(p) ⊆ Π∗(p).

By the definition of predMAP and Π(p), we also have that ∃ε > 0 such that for any u ∈ Rr(r+1)/2,

‖u− up‖ < ε =⇒ predMAP(u) ∈ Π(p) .

Thus, we have

inf
u∈Rr(r+1)/2:predMAP(u)/∈argminσp>`σ

p>ψ∗MAP(u) = inf
u∈Rr(r+1)/2:predMAP(u)/∈Π∗(p)

p>ψ∗MAP(u)

≥ inf
u∈Rr(r+1)/2:predMAP(u)/∈Π(p)

p>ψ∗MAP(u)

≥ inf
u∈Rr(r+1)/2:‖u−up‖≥ε

p>ψ∗MAP(u)

> inf
u∈Rr(r+1)/2

p>ψ∗MAP(u) ,

where the last inequality follows since p>ψ∗MAP(u) is a strictly convex function of u and up is its
unique minimizer.

Since the above holds for all p ∈ Preinforce, we have that (ψ∗MAP, predMAP) is (`MAP,Preinforce)-
calibrated.

The proof of Theorem 4 makes use of the following technical lemma:
Lemma 8. Let p ∈ Preinforce. Let the sets Π∗(p) and Π(p) be defined as in the proof of Theorem 4
above. Then Π(p) ⊆ Π∗(p).
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Proof of Lemma 8. As in the proof of Theorem 4, for brevity, we will write `MAP as ` below.

We first observe that all permutations σ ∈ Π(p) have the same value of p>`σ . To see this, note
that permutations in Π(p) differ only in positions they assign to elements i, j ∈ [r] with upii = upjj .
But since p ∈ Preinforce, we have that if upii = upjj , then upiγ = upjγ for all γ ∈ [r] \ {i, j}. Thus,
from the form of p>`σ , we can see that if upii = upjj , then interchanging the positions of i and j in a
permutation σ does not change the value of p>`σ . This establishes that all permutations σ ∈ Π(p)
have the same value of p>`σ .

We will show below that ∃ a permutation σ∗ ∈ Π(p) ∩ Π∗(p). This will give that σ∗ ∈ Π(p) and
p>`σ∗ = argminσp

>`σ; by the above observation, we will then have that p>`σ′ = argminσp
>`σ

for all σ′ ∈ Π(p), i.e. that Π(p) ⊆ Π∗(p).

In order to show the existence of a permutation σ∗ ∈ Π(p) ∩ Π∗(p), we will start with an arbitrary
element σ0 ∈ Π∗(p), and will construct a sequence of permutations σ1, σ2, . . . , σM = σ∗ by
transposing one adjacent pair at a time, such that all elements in the sequence remain in Π∗(p), and
the final permutation σM is also in Π(p).

Let σ0 ∈ Π∗(p). If σ0 ∈ Π(p), we are done, so let us assume σ0 /∈ Π(p). Thus there must exist an
adjacent pair of elements in σ that are not ordered according to the scores upii, i.e. there must exist
a, b, c ∈ [r] such that

σ0(a) = c, σ0(b) = c+ 1, and upaa < upbb .

Define σ1 to be such that σ1(a) = c+ 1, σ1(b) = c, and σ1(i) = σ0(i) for all other i ∈ [r]. We will
show that σ1 ∈ Π∗(p). For convenience let us denote (σ0)−1 as π0 and (σ1)−1 as π1. Note that

π0(c) = π1(c+ 1) = a

π0(c+ 1) = π1(c) = b

π0(i) = π1(i) ∀i ∈ [r] \ {c, c+ 1} .

From the expression for p>`σ in Eq. (2) in the proof of Theorem 4 above, we have

p>`σ0 − p>`σ1 =
1

c

 c∑
j=1

(upπ1(c)π1(j) − u
p
π0(c)π0(j))

+
1

c+ 1

c+1∑
j=1

(upπ1(c+1)π1(j) − u
p
π0(c+1)π0(j))


=

1

c

 c∑
j=1

(upbπ1(j) − u
p
aπ0(j))

+
1

c+ 1

c+1∑
j=1

(upaπ1(j) − u
p
bπ0(j))


=

(
1

c
− 1

c+ 1

) c−1∑
j=1

(upbπ1(j) − u
p
aπ1(j)) +

1

c
(upbb − u

p
aa) +

1

c+ 1
(upab + upaa − u

p
ba − u

p
bb)

=

(
1

c
− 1

c+ 1

)c−1∑
j=1

(upbπ1(j) − u
p
aπ1(j)) + upbb − u

p
aa


=

(
1

c
− 1

c+ 1

)upbb − (upaa +

c−1∑
j=1

(upaπ1(j) − u
p
bπ1(j))

)
≥

(
1

c
− 1

c+ 1

)upbb − (upaa +
∑

j∈[r],j /∈{c,c+1}

(upaπ1(j) − u
p
bπ1(j))+

)
≥ 0 ,

where the last inequality follows since p ∈ Preinforce. This gives σ1 ∈ Π∗(p). Moreover, the number
of adjacent pairs in σ1 that disagree with the ordering according to upii is one less than that in σ0.
Since there can be at most

(
r
2

)
such pairs in σ0 to start with, by repeating the above process, we will

eventually end up with a permutation σM ∈ Π(p)∩Π∗(p) (withM ≤
(
r
2

)
). The claim follows.
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Proof of Theorem 6

Proof. Let p ∈ Pf . Define up ∈ Rr as

up = EY∼p[f(Y )] =
∑
y∈Y

pyf(y) .

It is easy to see that up is the unique minimizer of p>ψf (u) over u ∈ Rr.

Also define yp ∈ Rr(r−1) as

ypij = EY∼p[Yij ] =
∑
y∈Y

pyyij ∀i 6= j .

For brevity, we will write `PD as ` below. Define the following sets:

Π∗(p) = argminσ∈Srp
>`σ = argminσ∈Sr

r∑
i=1

i−1∑
j=1

(ypij − y
p
ji) · 1(σ(i) > σ(j))

Π(p) =
{
σ ∈ Sr : upi > upj =⇒ σ(i) < σ(j)

}
.

We claim that Π(p) ⊆ Π∗(p). To see this, let σ ∈ Π(p). Since p ∈ Pf , we have

ypij > ypji =⇒ upi > upj =⇒ σ(i) < σ(j) ,

ypij < ypji =⇒ upi < upj =⇒ σ(i) > σ(j) .

This clearly gives σ ∈ Π∗(p). Thus Π(p) ⊆ Π∗(p).

By the definition of pred and Π(p), we also have that ∃ε > 0 such that for any u ∈ Rr,

‖u− up‖ < ε =⇒ pred(u) ∈ Π(p) .

Thus, we have

inf
u∈Rr:pred(u)/∈argminσp>`σ

p>ψf (u) = inf
u∈Rr:pred(u)/∈Π∗(p)

p>ψf (u)

≥ inf
u∈Rr:pred(u)/∈Π(p)

p>ψf (u)

≥ inf
u∈Rr:‖u−up‖≥ε

p>ψf (u)

> inf
u∈Rr

p>ψf (u) ,

where the last inequality follows since p>ψf (u) is a strictly convex function of u and up is its
unique minimizer.

Since the above holds for all p ∈ Pf , we have that (ψf , pred) is (`PD,Pf )-calibrated.

Proof of Theorem 7

Proof. Let p ∈ PDAG. Define up ∈ Rr(r−1) as

up = EY∼p[Yij ] =
∑
y∈Y

pyyij .

It is easy to see that up is the unique minimizer of p>ψ∗PD(u) over u ∈ Rr(r−1).

For brevity, we will write `PD as ` below. Define the following sets:

Π∗(p) = argminσ∈Srp
>`σ = argminσ∈Sr

r∑
i=1

i−1∑
j=1

(upij − u
p
ji) · 1(σ(i) > σ(j))

Π(p) =
{
σ ∈ Sr : σ corresponds to a topological order that could be returned by predPD(up)

}
.
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We claim that Π(p) ⊆ Π∗(p). To see this, let σ ∈ Π(p). Since p ∈ PDAG, we have that the graph
with edge weights (upij − u

p
ji)+ formed by pred(up) is a DAG, and therefore σ must agree with the

edges in this graph, i.e.
upij > upji =⇒ σ(i) < σ(j) ,

upij < upji =⇒ σ(i) > σ(j) .

This clearly gives σ ∈ Π∗(p). Thus Π(p) ⊆ Π∗(p).

Now, let

A(p) =
{
u ∈ Rr(r−1) : predPD(u) /∈ argminσp

>`σ
}

=
{
u ∈ Rr(r−1) : predPD(u) /∈ Π∗(p)

}
.

In order to show that

inf
u∈A(p)

p>ψ∗PD(u) > inf
u∈Rr

p>ψ∗PD(u) ,

we will show that any sequence {um} in Rr(r−1) converging to up must eventually lie outsideA(p),
i.e. that any such sequence must eventually have predPD(um) ∈ Π∗(p); the result will then follow
by strict convexity of the function u 7→ p>ψ∗PD(u) and the fact that up is its unique minimizer.

Let {um} be any sequence in Rr(r−1) converging to up. Let

ε = min
i 6=j

{
upij − u

p
ji : upij − u

p
ji > 0

}
.

Then for large enough m, we must have the following (by convergence of {um} to up):

upij − u
p
ji > 0 =⇒ umij − umji ≥ ε/2 ,

upij − u
p
ji = 0 =⇒ umij − umji ≤ ε/4 .

Thus, for large enough m, the directed graph induced by um contains the DAG induced by up, and
any edge (i, j) such that up

ij − up
ji > 0 will not be deleted by the algorithm when predPD(um) is

evaluated. Thus, for large enough m, we have predPD(um) ∈ Π(p) ⊆ Π∗(p).

Since the above holds for all p ∈ PDAG, we have that (ψ∗PD, predPD) is (`PD,PDAG)-calibrated.
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