Data structure of BDD nodes

- Let n be a BDD node.

- If n is a leaf node then
 - $\text{val}(n)$ denotes its value

- If n is a non-leaf node then
 - $\text{var}(n)$ denotes its variable
 - $\text{low}(n)$ denotes the node pointed to by green (0) edge
 - $\text{high}(n)$ denotes the node pointed to by red (1) edge

- Let $\text{label}(n)$ be a function from nodes to integers.
Algorithm REDUCE

1. Let $\text{label}(n) \leftarrow 0$ if $\text{val}(n) = 0$ and n is a leaf
 $\text{label}(n) \leftarrow 1$ if $\text{val}(n) = 1$ and n is a leaf
 (leaf)

2. If $\text{label}(\text{low}(n)) = \text{label}(\text{high}(n))$ then
 (redundant)
 $\text{label}(n) \leftarrow \text{label}(\text{low}(n))$

3. If there exists a node m such that $\text{var}(n) = \text{var}(m)$
 and $\text{label}(\text{low}(n)) = \text{label}(\text{low}(m))$ and
 $\text{label}(\text{high}(n)) = \text{label}(\text{high}(m))$ then
 (isomorphic)
 $\text{label}(n) \leftarrow \text{label}(m)$

4. Otherwise, $\text{label}(n) \leftarrow \text{next-label}$

5. Redirect the edges bottom-up according to reduction rules.
Example of application of REDUCE
Example of application of REDUCE