Soundness of LTL Model Checking

Aditya Kanade

E0223, CSA, IISc.
LTL Model Checking

TS |= \varphi?

<table>
<thead>
<tr>
<th>Step</th>
<th>Algorithm</th>
<th>Soundness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>LTL \rightarrow GNBA</td>
<td>$Lw(G_{\varphi}) = \text{words}(\varphi)$</td>
</tr>
<tr>
<td>2.</td>
<td>GNBA \rightarrow NBA</td>
<td>$Lw(G_{\varphi}) = Lw(A_{\varphi})$</td>
</tr>
<tr>
<td>3.</td>
<td>TS $\otimes A$</td>
<td>Product construction</td>
</tr>
<tr>
<td>4.</td>
<td>TS $\otimes A \models \square \square T F$ (persistence checking)</td>
<td>Nested DFS</td>
</tr>
</tbody>
</table>
LTL to GNBA

To prove that $L\omega(G\varphi) = \text{words}(\varphi)$.

2: Let $\bar{s} = A_0 A_1 A_2 \ldots \in \text{words}(\varphi)$.

(a) There exists a run $\overline{s} = B_0 B_1 B_2 \ldots$ of $G\varphi$ on \bar{s}.

(b) The run \overline{s} is an accepting run of $G\varphi$.

\subseteq: If $\bar{s} = A_0 A_1 A_2 \ldots \in L\omega(G\varphi)$ then $\bar{s} \models \varphi$.
\[L_w(g, \gamma) \geq \text{words}(\gamma) \]

Let \(\gamma = A_0 A_1 A_2 \ldots \in \text{words}(\gamma) \).

(a) Let \(B_i = \{ \psi \in \text{closure}(\gamma) \mid A_i A_{i+1} \ldots = \psi \} \).

- \(B_i \) is an elementary set of formulae i.e. \(B_i \in \wp \).
- \(B_{i+1} \subseteq f(B_i, A_i) \), for all \(i \geq 0 \).
 - \(A_i = B_i \cap \text{AP} \Rightarrow f(B_i, A_i) \neq \emptyset \)
 - \(\psi \in B_i \) iff \(\psi \in B_{i+1} \) \(\sim \) Def. of \(f \) in the construction
 - \(\psi_1 \cup \psi_2 \in B_i \) iff \((\psi_2 \in B_i) \lor (\psi_1 \in B_i \text{ and } \psi_1 \cup \psi_2 \in B_{i+1}) \)
 \(\sim \) Def. of \(f \) in the construction
(b) Prove that \(B_i \in F(\psi_1 \cup \psi_2) \), for infinitely many \(i \), for all \(\psi_1 \cup \psi_2 \in \text{closure}(\psi) \).

Let there be finitely many \(j \) such that \(B_j \in F(\psi_1 \cup \psi_2) \).

\[B_i \notin F(\psi_1 \cup \psi_2) \Rightarrow \psi_1 \cup \psi_2 \notin B_i \text{ and } \psi_2 \notin B_i \ldots \text{(construction)} \]

Now, \(A_i A_{i+1} \ldots \models \psi_1 \cup \psi_2 \text{ and } A_i A_{i+1} \ldots \not\models \psi_2 \ldots \text{(Def. of } B_i) \)

Hence, there exists \(k \geq i \), \(A_k A_{k+1} \ldots \models \psi_2 \).

Thus, \(\psi_2 \in B_k \). Further, \(B_k \in F(\psi_1 \cup \psi_2) \).

If \(B_i \notin F(\psi_1 \cup \psi_2) \) for \(i \neq m \), then \(B_k \in F(\psi_1 \cup \psi_2) \) for \(i = m \). \(k \).

Hence, \(G = B_0 B_1 B_2 \ldots \) is an accepting run of \(G_\psi \).
Let $6 = A_0 A_1 A_2 \ldots \in \text{Lw}(G \psi)$.

Let $B_0 B_1 B_2 \ldots$ be the corresponding accepting run of $G \psi$.

We have $A_i = B_i \cap \text{AP}$ and

$6 = (B_0 \cap \text{AP}) (B_1 \cap \text{AP}) (B_2 \cap \text{AP}) \ldots = \psi$?

Prove that,

for all $\psi \in \text{closure}(\psi)$,

$\psi \in B_0 \iff A_0 A_1 A_2 \ldots = \psi$.
Proof by structural induction on the structure of ψ.

Base case: $\psi = \text{true}^*$, $\psi \in A^P$ (*Ref. to additional slides*)

Induction step: $\psi_1 \land \psi_2^*$, $\Diamond \psi$, $\psi_1 \lor \psi_2$

1. If $\psi_1 \lor \psi_2 \in B_0$ then $\Diamond \bigoplus A_1 A_2 \ldots = \psi_1 \lor \psi_2$.

 $\psi_1 \in B_0$ or $\psi_2 \in B_0$.

 *Let $\psi_2 \notin B_j$, for all $j \geq 0$.

 $\psi_1 \in B_j$ and $\psi_1 \lor \psi_2 \in B_j$, for $j \geq 0$ (by construction).

 However, $B_0 B_1 B_2 \ldots$ is accepting.
Therefore, $B_j \in F$ for i.m. $j \geq 0$.

\[(y_1 \cup y_2)\]

But, we just showed that,

\[y_2 \not\in B_j \text{ and } y_1 \cup y_2 \in B_j\]

iff

\[B_j \not\in F(y_1 \cup y_2), \text{ for all } j ... (by \ construction)\]

Contradiction.

Hence, $y_2 \in B_j$ and $y_1 \in B_i$, $0 \leq i < j$... (by construction)

By hypothesis, $A_j \ldots = y_2$, $A_i \ldots = y_1$, $0 \leq i < j$.

Hence, $A_0 A_1 \ldots = y_1 \cup y_2$.
2. If \(A_0 A_1 \ldots \subseteq \psi_1 \cup \psi_2 \) then \(\psi_1 \cup \psi_2 \subseteq B_0 \).

Let \(A_0 A_1 \cdots \subseteq \psi_1 \cup \psi_2 \). There exists a \(j \) s.t.

\[\psi_2 \subseteq B_j \quad \text{(by induction hypothesis)} \]

\[\psi_1 \subseteq B_i, \quad 0 \leq i < j \]

By the definition of elementary sets:

\[\psi_1 \cup \psi_2 \subseteq B_j \]

\[\psi_1 \cup \psi_2 \subseteq B_i, \quad 0 \leq i < j \]

Hence, proved.
To prove that $Lw(\text{G}_p) = Lw(\text{A}_p)$

Let F be the acc. set of A_p and F_i, \ldots, F_k be acc. sets of G_p.

To prove:

2: Let $w \in Lw(\text{A}_p)$ and γ be the corr. acc. run.

$$\text{Inf}(\gamma) \cap F \neq \emptyset \iff \text{Inf}(\gamma) \cap F_i \neq \emptyset, \text{ for all } i.$$

Thus, $w \in Lw(\text{G}_p)$.

\[\leq \]

3: Let $w \in Lw(\text{G}_p)$. Suppose $w \notin Lw(\text{A}_p)$.

Let the run γ of A on w be stuck in an i'th copy.

Thus, $\text{Inf}(\gamma) \cap F_i = \emptyset$. Otherwise, you escape.

The run γ corr. to a run γ' of G_p (on the first comp.). Contradiction.
Soundness of Nested DFS

To prove that the nested DFS does not miss a cycle containing S ≠ a (even though we ignore the states visited in previous calls to CYCLE-CHECK.)

To prove that upon calling CYCLE-CHECK(s), there is no cycle of the form s t₁ ... tₖ s such that some tᵢ ∈ Y, 1 ≤ i ≤ k.

↑
global set of visited states
Suppose there is some $t_i = t$ s.t. $t \in V$. There must be some $u \neq a$ s.t. t was visited during a call $\text{CYCLECHECK}(u) < \text{CYCLECHECK}(s)$. We therefore have the following reachability relations:

```
\[ \sim \quad u \neq a \quad \circ \quad t = a \quad \circ \quad s \neq a \quad \text{visited} \]
```
(a) Let \(u \) precede \(s \) in the outer DFS.

Hence, \(\text{CYCLE-CHECK}(s) < \text{CYCLE-CHECK}(u) \).

Contradiction with *

(b) Let \(s \) precede \(u \) in the outer DFS.

Hence, \(u \) is reachable from \(s \) ...(as \(s \) was on the stack.)

Already, \(t \) is reachable from \(u \) and

\[s \text{ is reachable from } t \]

\[\implies s \text{ is reachable from } u. \]

This (or some other) cycle containing \(u \) should be
detected & no call of \(\text{CYCLE-CHECK}(s) \).