Decision Procedures
An Algorithmic Point of View

Gaussian Elimination and Simplex

Daniel Kroening and Ofer Strichman
Gaussian’s elimination

- Given a linear system \(Ax = b \)

\[
\begin{bmatrix}
 a_{11} & a_{12} & \ldots & a_{1k} \\
 a_{21} & a_{22} & \ldots & a_{2k} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{k1} & a_{k2} & \ldots & a_{kk}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_k
\end{bmatrix} =
\begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_k
\end{bmatrix}
\]

- Manipulate \(A|b \) to an upper-triangular form
Gaussian’s elimination

Then, solve backwards from the k’s row according to:

$$x_i = \frac{1}{a'_{ii}} (b'_i - \sum_{j=i+1}^{k} a'_{ij} x_j)$$
Gaussian elimination - example

\[
\begin{pmatrix}
1 & 2 & 1 \\
-2 & 3 & 4 \\
4 & -1 & -8
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
=
\begin{pmatrix}
6 \\
3 \\
9
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 2 & 1 | 6 \\
-2 & 3 & 4 | 3 \\
0 & -9 & -12 | -15
\end{pmatrix}
=
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
\]

\[
R3+ = -4R1
\]

\[
\begin{pmatrix}
1 & 2 & 1 | 6 \\
0 & 7 & 6 | 15 \\
0 & -9 & -12 | -15
\end{pmatrix}
=
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
\]

\[
R2+ = 2R1
\]

\[
\begin{pmatrix}
1 & 2 & 1 | 6 \\
0 & 7 & 6 | 15 \\
0 & 0 & -\frac{30}{7} | \frac{30}{7}
\end{pmatrix}
=
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
\]

\[
R3+ = \frac{9}{7}R2
\]

And now... \(x_3 = -1, x_2 = 3, x_1 = 1 \) problem solved.
Feasibility with Simplex

- Simplex was originally designed for solving the optimization problem:

\[
\begin{align*}
\max & \quad \vec{c} \vec{x} \\
\text{s.t.} & \quad A\vec{x} \leq \vec{b}, \quad \vec{x} \geq \vec{0}
\end{align*}
\]

- We are only interested in the feasibility problem.

Is this system feasible? Is this system optimal?
General simplex

- We will learn a variant called general simplex.
- Very suitable for solving the feasibility problem fast.
- The input: \(A\vec{x} \leq \vec{b} \)

 - \(A \) is a \(m \times n \) coefficient matrix
 - The problem variables: \(\vec{x} = x_1, \ldots, x_n \)

- First step: convert the input to general form
General form

- General form: \(A\vec{x} = 0 \) and \(\bigwedge_{i=1}^{m} l_i \leq s_i \leq u_i \)

- A combination of:
 - Linear equalities of the form \(\sum_i a_i x_i = 0 \)
 - Lower and upper bounds on variables.
Converting to General Form

- **A:** Replace $\sum_i a_i x_i \bowtie b_j$ \ (where $\bowtie \in \{=, \leq, \geq\}$) with $\sum_i a_i x_i - s_j = 0$

 and $s_j \bowtie b_j$

- s_1, \ldots, s_m are called the additional variables.
Example 1

Convert \(x + y \geq 2 \)

to: \(x + y - s_1 = 0 \)

\(s_1 \geq 2 \)

It is common to keep the conjunctions implicit.
Example 2

- Convert

\[
\begin{align*}
x &+ y &\geq 2 \\
2x &- y &\geq 0 \\
-x &+ 2y &\geq 1
\end{align*}
\]

to:

\[
\begin{align*}
x &+ y &- s_1 &= 0 \\
2x &- y &- s_2 &= 0 \\
-x &+ 2y &- s_3 &= 0 \\
s_1 &\geq 2 \\
s_2 &\geq 0 \\
s_3 &\geq 1
\end{align*}
\]
Simplex basics…

- Linear inequality constraints, geometrically, define a convex polyhedron.
Our example from before, geometrically

\[
\begin{align*}
x + y & \geq 2 \\
2x - y & \geq 0 \\
-x + 2y & \geq 1
\end{align*}
\]

General Simplex begins in the origin...
Matrix form

- Recall the general form: \(A\vec{x} = 0 \) and \(\bigwedge_{i=1}^{m} l_i \leq s_i \leq u_i \)
- Due to the additional variables:
 - now \(A \) is an \(m \times (n + m) \) matrix.

\[
\begin{align*}
 x + y - s_1 &= 0 \\
 2x - y - s_2 &= 0 \\
 -x + 2y - s_3 &= 0 \\
 s_1 &\geq 2 \\
 s_2 &\geq 0 \\
 s_3 &\geq 1
\end{align*}
\]

\[
\begin{pmatrix}
 x & y & s_1 & s_2 & s_3 \\
 1 & 1 & -1 & 0 & 0 \\
 2 & -1 & 0 & -1 & 0 \\
 -1 & 2 & 0 & 0 & -1
\end{pmatrix}
\]
The tableau

- The diagonal part is inherent to the general form

\[
\begin{pmatrix}
 x & y & s_1 & s_2 & s_3 \\
 1 & 1 & -1 & 0 & 0 \\
 2 & -1 & 0 & -1 & 0 \\
 -1 & 2 & 0 & 0 & -1 \\
\end{pmatrix}
\]

- We can instead write:

\[
\begin{pmatrix}
 x & y \\
 s_1 & \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ -1 & 2 \end{pmatrix} \\
\end{pmatrix}
\]

This is called the tableau
The tableau

- The tableau changes throughout the algorithm, but maintains its $m \times n$ structure

\[
\begin{array}{ccc}
\text{Basic variables} & x & y \\
 s_1 & \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ -1 & 2 \end{pmatrix} & \\
 s_2 & \\
 s_3 & \\
\end{array}
\]

- Distinguish between basic and nonbasic variables
- Initially, basic variables = the additional variables.
The tableau

- Denote by
 - \mathcal{B} – Basic variables
 - \mathcal{N} – Nonbasic variables

- The tableau is simply a rewrite of the system:

$$\bigwedge_{x_i \in \mathcal{B}} \left(x_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j \right)$$

- The basic variables are also called the dependent variables.
The general simplex algorithm

- Simplex maintains:
 - The tableau,
 - an assignment α to all variables
 - The bounds

- Initially,
 - $\mathcal{B} = \text{additional variables}$
 - $\mathcal{N} = \text{problem variables}$
 - $\alpha(x_i) = 0$ for $i \in \{1,\ldots,n+m\}$
Invariants

- Two invariants are maintained throughout:
 1. $A\bar{x} = 0$
 2. All nonbasic variables satisfy their bounds

- Can you see why these invariants are maintained initially?
- We should check that they are indeed maintained
The general simplex algorithm

- The initial assignment satisfies $A\vec{x} = 0$
- If the bounds of all basic variables are satisfied by α, return `Satisfiable'.
- Otherwise... pivot.
Pivoting

- Find a basic variable x_i that violates its bounds.
 - Suppose that $\alpha(x_i) < l_i$

- Find a nonbasic variable x_j such that
 - $a_{ij} > 0$ and $\alpha(x_j) < u_j$, or
 - $a_{ij} < 0$ and $\alpha(x_j) > l_j$

- Why?
Pivoting

- Find a basic variable x_i that violates its bounds.
 - Suppose that $\alpha(x_i) < l_i$
- Find a nonbasic variable x_j such that
 - $a_{ij} > 0$ and $\alpha(x_j) < u_j$, or
 - $a_{ij} < 0$ and $\alpha(x_j) > l_j$
- Such a variable x_j is called suitable.
- If there is no suitable variable – return ‘Unsatisfiable’
 - Why?
Pivoting x_i with x_j

- Solve equation i for x_j:

 From: $x_i = a_{ij}x_j + \sum_{k \neq j} a_{ik}x_k$

 To: $x_j = \frac{x_i}{a_{ij}} - \sum_{k \neq j} \frac{a_{ik}}{a_{ij}}x_k$

- Swap x_i and x_j, and update the i-th row accordingly.

From

| a_{i1} | ... | a_{ij} | ... | a_{in} |

To:

| $-a_{i1}$ | ... | 1 | ... | $-a_{in}$ |

\[
\begin{array}{c|c|c|c}
\hline
-a_{i1} & \cdots & 1 & -a_{in} \\
\hline
a_{ij} & \cdots & a_{ij} & a_{ij} \\
\hline
\end{array}
\]
Pivoting x_i with x_j

- Update all other rows:
 - Replace x_j with its equivalent obtained from row i:

$$x_j = \frac{x_i}{a_{ij}} - \sum_{k \neq j} \frac{a_{ik}}{a_{ij}} x_k$$
Pivoting

- Update α as follows:
- Increase $\alpha(x_j)$ by $\theta = \frac{l_i - \alpha(x_i)}{a_{ij}}$
 - Now x_j is a basic variable: it can violate its bounds.

- Update $\alpha(x_i)$ accordingly
 - Q: What is now $\alpha(x_i)$?

- Update α for all other basic (dependent) variables.
Example

- Recall the tableau and constraints in our example:

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>2</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td>-1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

- Initially α assigns 0 to all variables
- Bounds of s_1 and s_3 are violated
Example

- Recall the tableau and constraints in our example:

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>s_2</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>s_3</td>
<td>-1</td>
<td>2</td>
</tr>
</tbody>
</table>

- We will solve s_1
- x is a suitable nonbasic variable for pivoting
 - It has no upper bound
- So now we pivot s_1 with x
Example

- Recall the tableau and constraints in our example:

 \[
 \begin{array}{c|cc}
 & x & y \\
 \hline
 s_1 & 1 & 1 \\
 s_2 & 2 & -1 \\
 s_3 & -1 & 2 \\
 \end{array}
 \begin{array}{c}
 2 \leq s_1 \\
 0 \leq s_2 \\
 1 \leq s_3 \\
 \end{array}
 \]

- Solve 1st row for \(x\): \(s_1 = x + y \iff x = s_1 - y\)

- Replace \(x\) with \(s_1\) in other rows:

 \[s_2 = 2(s_1 - y) - y \iff s_2 = 2s_1 - 3y\]

 \[s_3 = -(s_1 - y) + 2y \iff s_3 = -s_1 + 3y\]
Example

The new state:

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>s_2</td>
<td>2</td>
<td>-3</td>
</tr>
<tr>
<td>s_3</td>
<td>-1</td>
<td>3</td>
</tr>
</tbody>
</table>

Solve 1$^{\text{st}}$ row for x: $s_1 = x + y \iff x = s_1 - y$

Replace x with s_1 in other rows:

$s_2 = 2(s_1 - y) - y \iff s_2 = 2s_1 - 3y$

$s_3 = -(s_1 - y) + 2y \iff s_3 = -s_1 + 3y$
Example

- The new state:

<table>
<thead>
<tr>
<th>s₁</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>s₂</td>
<td>2</td>
</tr>
<tr>
<td>s₃</td>
<td>-1</td>
</tr>
</tbody>
</table>

 2 ≤ s₁
 0 ≤ s₂
 1 ≤ s₃

- What about the assignment?

- We should increase x by \(\theta = \frac{2 - 0}{1} = 2 \)
 - Hence, \(\alpha(x) = 0 + 2 = 2 \)
 - Now \(s₁ \) is equal to its lower bound: \(\alpha(s₁) = 2 \)
 - Update all the others
Example

- **The new state:**

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>s_2</td>
<td>2</td>
<td>-3</td>
</tr>
<tr>
<td>s_3</td>
<td>-1</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$\alpha(x)$</th>
<th>$\alpha(y)$</th>
<th>$2 \leq s_1$</th>
<th>$\alpha(s_1)$</th>
<th>$\alpha(s_2)$</th>
<th>$\alpha(s_3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>-2</td>
</tr>
<tr>
<td>s_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>s_3</td>
<td>0</td>
<td>-2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>-2</td>
</tr>
</tbody>
</table>

- **Now s_3 violates its lower bound**

- **Which nonbasic variable is suitable for pivoting?**

 - That’s right… y
Example

The new state:

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>y</th>
<th>$\alpha(x)$</th>
<th>$\alpha(y)$</th>
<th>$\alpha(s_1)$</th>
<th>$\alpha(s_2)$</th>
<th>$\alpha(s_3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>s_2</td>
<td>2</td>
<td>-3</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td>-1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We should increase y by $\theta = \frac{1 - (-2)}{3} = 1$
Example

- The final state:

<table>
<thead>
<tr>
<th>x</th>
<th>2/3</th>
<th>-1/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>s_3</td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>y</td>
<td>1/3</td>
<td>1/3</td>
</tr>
</tbody>
</table>

\[\alpha(x) = 1 \]
\[\alpha(y) = 1 \]
\[\alpha(s_1) = 2 \]
\[\alpha(s_2) = 1 \]
\[\alpha(s_3) = 1 \]

- All constraints are now satisfied
Observations

- The additional variables:
 - Only additional variables have bounds.
 - These bounds are permanent.
 - Additional variables exit the base only on extreme points (their lower or upper bounds).
 - When entering the base, they shift towards the other bound and possibly cross it (violate it).
Observations

Can it be that we $\text{pivot}(x_i, x_j)$ and then $\text{pivot}(x_j, x_i)$ and enter a (local) cycle?

□ No.
□ For example, suppose that $a_{ij} > 0$.
□ We increased $\alpha(x_j)$ so now $\alpha(x_i) = l_i$.
□ After pivoting, possibly $\alpha(x_j) > u_j$
□ But $a_{ij} = 1 / a_{ij} > 0$, hence x_i is not suitable.
Observations

- Is termination guaranteed?
 - Not obvious.
 - Perhaps there are bigger cycles.
- In order to avoid circles, we use Bland’s rule:
 - Determine a total order on the variables.
 - Choose the first basic variable that violates its bounds, and first nonbasic suitable variable for pivoting.
 - It can be proven that this guarantees that no base is repeated, which implies termination.
1. Transform the system into the general form

\[A\vec{x} = 0 \quad \text{and} \quad \bigwedge_{i=1}^{m} l_i \leq s_i \leq u_i. \]

2. Set \(B \) to be the set of additional variables \(s_1, \ldots, s_m \).

3. Construct the tableau for \(A \).

4. Determine a fixed order on the variables.

5. If there is no basic variable that violates its bounds, return “Satisfiable”. Otherwise, let \(x_i \) be the first basic variable in the order that violates its bounds.

6. Search for the first suitable nonbasic variable \(x_j \) in the order for pivoting with \(x_i \). If there is no such variable, return “Unsatisfiable”.

7. Perform the pivot operation on \(x_i \) and \(x_j \).

8. Go to step 5.