Outline

- Introduction
 - Definition, complexity
 - Reducing Uninterpreted Functions to Equality Logic
 - Using Uninterpreted Functions in proofs
 - Simplifications

- Introduction to the decision procedures
 - The framework: assumptions and Normal Forms
 - General terms and notions
 - Solving a conjunction of equalities
 - Simplifications
Basic assumptions and notations

- Input formulas are in **NNF**
- Input formulas are checked for **satisfiability**
- Formula with Uninterpreted Functions: ϕ^UF
- Equality formula: ϕ^E
First: conjunction of equalities

- **Input**: A conjunction of equalities and disequalities

1. Define an equivalence class for each variable. For each equality $x = y$ unite the equivalence classes of x and y. Repeat until convergence.
2. For each disequality $u \neq v$ if u is in the same equivalence class as v return 'UNSAT'.
3. Return 'SAT'.

Example

\[x_1 = x_2 \land x_2 = x_3 \land x_4 = x_5 \land x_5 \neq x_1 \]

Is there a disequality between members of the same class?
Next: add Uninterpreted Functions

\[x_1 = x_2 \land x_2 = x_3 \land x_4 = x_5 \land x_5 \neq x_1 \land F(x_1) \neq F(x_2) \]
Next: Compute the Congruence Closure

\[x_1 = x_2 \land x_2 = x_3 \land x_4 = x_5 \land x_5 \neq x_1 \land F(x_1) \neq F(x_2) \]

Now - is there a disequality between members of the same class?
This is called the Congruence Closure
And now: consider a Boolean structure

\[x_1 = x_2 \lor (x_2 = x_3 \land x_4 = x_5 \land x_5 \neq x_1 \land F(x_1) \neq F(x_2)) \]

Syntactic case splitting: this is what we want to avoid!

Decision Procedures
An algorithmic point of view 8
Deciding Equality Logic with UF

- **Input:** Equality Logic formula ϕ^{UF}
- **Convert** ϕ^{UF} to DNF
- **For each clause:**
 - Define an equivalence class for each variable and each function instance.
 - For each equality $x = y$ unite the equivalence classes of x and y. For each function symbol F, unite the classes of $F(x)$ and $F(y)$. Repeat until convergence.
 - If all disequalities are between terms from different equivalence classes, return 'SAT'.
- **Return 'UNSAT'.
Basic notions

\[\phi^E: \ x = y \land y = z \land z \neq x \]

- The **Equality predicates**: \{ \(x = y, y = z, z \neq x \) \}
 which we can break to two sets:
 \[E_\subseteq = \{ x = y, y = z \}, \quad E_\neq = \{ z \neq x \} \]
- The **Equality Graph** \(G^E(\phi^E) = \langle V, E_\subseteq, E_\neq \rangle \)
 (a.k.a “E-graph”)
Basic notions

$\phi_1^E: x = y \land y = z \land z \neq x \quad \text{unsatisfiable}$

$\phi_2^E: x = y \land y = z \lor z \neq x \quad \text{satisfiable}$

The graph $G^E(\phi^E)$ represents an abstraction of ϕ^E

It ignores the Boolean structure of ϕ^E
Basic notions

- **Dfn:** a path made of E_\equiv edges is an *Equality Path*. We write $x =^* z$.

- **Dfn:** a path made of E_\equiv edges $+$ exactly one edge from E_\neq is a *Disequality Path*. We write $x \neq^* y$.
Basic notions

- **Dfn.** A cycle with one disequality edge is a **Contradictory Cycle.**

- In a Contradictory Cycle, for every two nodes x, y it holds that $x = * y$ and $x \neq * y$.
Basic notions

- **Dfn**: A subgraph is called **satisfiable** iff the conjunction of the predicates represented by its edges is **satisfiable**.

- **Thm**: A subgraph is **unsatisfiable** iff it contains a **Contradictory cycle**
Basic notions

Thm: Every Contradictory Cycle is either simple or contains a simple contradictory cycle
Simplifications, again

- Let S be the set of edges that are not part of any Contradictory Cycle
- Thm: replacing all solid edges in S with False, and all dashed edges in S with True, preserves satisfiability
Simplification: example

\[(x_1 = x_2 \lor x_1 = x_4) \land (x_1 \neq x_3 \lor x_2 = x_3) \]

\[(x_1 = x_2 \lor \text{True}) \land (x_1 \neq x_3 \lor x_2 = x_3) \]

\[(\neg \text{False} \lor \text{True}) = \text{True} \]

Satisfiable!
Syntactic vs. Semantic splits

- So far we saw how to handle disjunctions through syntactic case-splitting.
- There are much better ways to do it than simply transforming it to DNF:
 - Semantic Tableaux,
 - SAT-based splitting,
 - others…
- We will investigate some of these methods later in the course.
Syntactic vs. Semantic splits

- Now we start looking at methods that split the search space instead. This is called *semantic splitting*.

- SAT is a very good engine for performing semantic splitting, due to its ability to guide the search, prune the search-space etc.