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Abstract 1 Introduction

An understanding of application I/O access patterns is
useful in several situations. First, gaining insight intbat Enterprise systems require an understanding of the be-
applications are doing with their data at a semantic level havior of the applications that use their services. This
helps in designing efficient storage systems. Secondpishel application-level knowledge is necessary for self-tuning
create benchmarks that mimic realistic application behav- Planning or automated troubleshooting and management.
ior closely. Third, it enables autonomic systems as the-info Unfortunately, there is no accepted mechanism for this
mation obtained can be used to adapt the system in a closednowledge to flow from the application to the system. We
loop. can neither impose upon application developers to give

All these use cases require the ability to extract the hints, nor over-engineer network protocols to transport
application-level semantics of 1/O operations. Methods more semantics. Therefore, we need mechanisms for sys-
such as modifying application code to associate 1/O oper- tems tolearn what the application is doingutomatically
ations with semantic tags are intrusive. It is well known  Being able to identify the application-level workload has
that network file system traces are an important source of Significaﬂt benefits. If we can figure out that the client OLTP
information that can be obtained non-intrusively and ana- (online transaction processing) application is doingie,
lyzed either online or offline. These traces are a sequenceWe can tune the caching and prefetching suitably. If we can
of primitive file system operations and their parameters. discover that the client is executing tbempilephase of a
Simple counting, statistical analysis or deterministiars~ make we can immediately know that it will be followed by
techniques are inadequate for discovering appiicatiweie alink phase, that the OUtpUt files generated will be accessed
semantics in the general case, because of the inherent variVery soon, and that the output files can be placed on less-
ation and noise in realistic traces. critical storage since they can be generated at will. If we

In this paper, we describe a trace analysis methodology can spot that the client is executingapyoperation, then
based onProfile Hidden Markov Models We show that We can derive data provenance information usable by com-
the methodology has powerful discriminatory capabilities Pliance engines. If we can match the signature of a trace
that enable it to recognize applications based on the pat- With that of known malware or viruses, that can be use-
terns in the traces, and to mark out regions ina |0ng trace ful as well. We can employ offline workload identification
that encapsulate sets of primitive operations that represe  for auditing, forensics and chargeback. We can help stor-
higher-level application actions. It is robust enough titat ~ @ge systems management by providing inputs to sizing and
can work around discrepancies between training and target Planning tools.
traces such as in length and interleaving with other opera-  In this paper, we tackle a specific instance of the prob-
tions. We demonstrate the feasibility of recognizing patte €M — given the headers of an NFS [4] trace, to identify the
based on a small sampling of the trace, enabling faster trace application-level workload that generated it. NFS clients
analysis. Preliminary experiments show that the method isSend messages to the server that contain opcodes such as
capable of learning accurate profile models on live traces READ, WRITE, SETATTR, READDIR, etc., their associ-
in an online setting. We present a detailed evaluation af thi ated parameters such as file handles and file offsets, and
methodology in a UNIX environment using NFS traces of data. An NFS trace contains a timestamped sequence of
selected commonly used applications such as compilationghese messages along with the responses sent by the server
as well as on industrial strength benchmarks such as TPC-to the client. These traces can be easily captured [12, 1]
C and Postmark, and discuss its capabilities and limitagion for online or offline analysis, allowing us to develop a non-

in the context of the use cases mentioned above. invasive tool USing the meth0d0|ogy described here. Fur-
thermore, the NFS trace contains all the interactions be-

tween the clients and the server. As all the necessary in-



formation is available, we can assert that any deficiency in the traces such as file handles and offsets are not suf-
tackling our use cases is solely due to the sophistication of ficiently amenable to mathematical modeling, so this
the analysis methods. result is valuable.

However, given a trace captured at the server, it is non- . : . -
Since the technique we use requires training on data sets

trivial to identify the client applications that generatied . .
. o followed by a recognition phase and also involves reason-
First, there could be noise in the form of background com- . o .
able amounts of computation, it is best suited for those

munication between the client and server. Second, mes roblems whose natural time constants are in the minutes or
sages could be interleaved with those from other applica—p

tions on the same client machine. Third, the application’s hours range (such as in system management, for example,

parameters may create variations in the trace. For ins,tancedeu:“cmg configuration errors). ~Algorithmic approaches,

. . L widely used, are still the best if the time constants are much
traces of a single file copy and that of a recursive file copy

may look very different (see Tables 1 and 2), even though smaller (such as in mllllsgconds or seconds). .
L S . . The rest of the paper is organized as follows. Section 2
it is the same application. Fourth, the asynchrony in multi-

threaded applications impact the ordering of messages inpresents t_he current state_of research_ in this area andsplz_;\ce
. S our work in context. Section 3 describes the mathematics
the traces. Therefore, we believe that deterministic pat-

. ) behind our methodology, the workflow associated with it,
tern searching methods will not be able to unearth the fun- . o . .
) ) ..~ and describes how itis used to identify workloads and mark
damental patterns hidden in a trace. Methods originating : o .
. . . . ; out regions exhibiting known patterns in the trace. Sec-
in the Machine Learning domain have shown ConSIderabletion 4 offers experimental validation of our techniques. Fi
promise in computational biology [16, 14] as well as in ini- S €xp . . ques.
. : . . nally, Section 6 summarizes our conclusions and proposes
tial studies on trace analysis [19]. In this paper, we apply a avenues for continuing this work
well-known technique calleBrofile Hidden Markov Model 9 '
(profile HMM) [16, 14] to this problem, and demonstrate
its pattern-recognition capabilities with respect to ogseu 2 Related Work
cases. _ _ _ _ _
The key contributions of this paper are as follows: There is a rich body of work in which file system
o _ traces have been analyzed to get aggregate information
Workload Identification We show that profile HMMs,  about systems and to understand how storage is used over
once trained, are capable of identifying the applica- time [2, 17, 24, 11]. Our work differs from this body of
tion that generated the trace. Using commonly usedwork in that we focus on individual workloads running
UNIX commands such asiake, cp, find, mv, tar, un-  on the system and attempt to discover them. Since prior
tar, etc., as well as industry benchmarks such as TPC-research efforts are oriented towards extracting gross be-
C, we show that we are able to cleanly distinguish the havior, counting-based tools suffice. The problem that we
traces that these commands generate. tackle in this paper requires more powerful methods.
Traces are a good source of information as they contain
a complete picture of the inputs to a system and at the same
time are easy to capture in a non-invasive manner. Ellard
[10] makes a strong case that the information in NFS traces
q can be used to enable system optimizations. HMMs gener-
ated from block traces have been used for adaptive prefetch-
ing [27]. Traces have been used for file classification [19].
In that work, the authors build a decision tree based sys-
tem that uses NFS traces to infer correlations between the
create-time properties of files such as their names and the
dynamic properties such as access patterns and size. In this
paper, we do not attempt to classify files and data but focus

Automated Learning We demonstrate a technique by more on the applications that access them.
which the profile HMMs can be trained automatically ~ The power of HMM as a tool to extract workload access
without manual labeling of workloads. We use the Patterns is known [18]. Our work is significantly larger in
technique to train and then subsequently identify con- Scope. While they restrict themselves to inferring the se-

stituent workloads of a Linux kernel compilation task. duentiality of workloads using read and write headers in the
block traces, we use all the opcodes available in NFS head-

Power of Opcode Sequence¥Ve show that opcode se- ers to discover the higher-level application that caused it
guences alone contain sufficient information to tackle The sequentiality of a workload can perhaps also be discov-
many of the common use cases. Other information in ered using our framework by including the file offsets as

Trace Annotation We show that our methodology is able
to identify transitions between workloads, and mark
workload-specific regions in a long trace sequence.

Trace Sampling We show that profile HMMs do not nee
the entire trace to work on. With merely a 20% seg-
ment of the trace, sampled randomly, we are able
to discriminate between many workloads and identify
them with high confidence. This will enable us to per-
form faster analysis. Further, we show how to use this
ability to identify concurrently executing workloads.



part of the alphabet through an appropriate scheme of quan-

tization.

Magpie [3] diagnoses problems in distributed systems by
monitoring the communications between black-box com-
ponents, and applying an edit-distance based clustering
method to group similar workloads together. Somewhat
similar is Spectroscope [25], which uses clustering on re-
quest flow graphs constructed from traces to categorize anc
learn about differences in system behavior. Intrusiondete
tion is another area where various such techniques are useg
Warrender [29] surveys methods for intrusion detection us-
ing various data mining techniques including HMMs, on
system call traces.

Our work is different from all of the above in that it is not
only able to identify a higher-level workload, given a trace
but also to be able to accurately mark out workload regions
in a composite trace.

3 Methodology

A key observation that motivates our approach to solv-

cp * dir/

GETATTR Cal |, FH 0x0eb18814

READDI RPLUS Cal |, FH: 0x0eb18814
READDI RPLUS Reply (Call In 9) ...
LOOKUP Cal |, DH: 0xe003db8b/ t gsl wi z. h
LOOKUP Repl y Error : NFS3ERR_NCENT

CGETATTR Cal |, FH 0x21bla714
ACCESS Cal |, FH: 0x21bla714
CREATE Cal I, DH: 0xe003db8b/tqgslwi z. h

SETATTR Cal |,
GETACL Call

GETATTR Cal |, FH: Ox6bd9e67c
READ Cal |, FH:0x21bla714 ...

FH: 0x6bd9e67¢c

cp -r dirl dir

ACCESS Cal |, FH 0xc5914d40
LOOKUP Cal |, DH: 0xc5914d40/ dir
LOOKUP Reply Error: NFS3ERR_NOENT
MKDI R Cal |, DH: 0xc5914d40/dir

GETATTR Cal |, FH 0xc5914d40
CGETACL Cal |

ACCESS Cal |, FH: 0xc5914d40
LOOKUP Cal |, DH: 0xc5914d40/ di r

LOOKUP Reply, FH: 0x3fb1lb914
GETATTR Cal |, FH 0x0eb18814
ACCESS Cal |, FH: 0x0eb18814
READDI RPLUS Cal |, FH: 0x0eb18814

ing the problem is that NFS traces corresponding to a given
workload class exhibit significant variability, yet have a
characteristic signature. For instance, look at the fagaes
depicting acp command, shown in Tables 1 and 2. The
fuzziness in the repeating subsequences in the trace of
dir/ andcp -r dirl dir make us look at probabilistic meth-
ods.

An HMM is appropriate for probabilistic modeling of

sequences, and has been used in similar settings in the
past [14]. However, in our case, the sequences of the same

workload show additions, deletions and mutations between
them that are not easily modeled by an HMMcp foo bar
differs fromcp foo dir/— the latter has an exttaokupoper-

WRI TE Cal |, FH: Ox6bd9e67c ... READDI RPLUS Reply .
COW T Cal |, FH 0x6bd9e67c ACCESS Cal |, FH: 0x3fblb914
GETATTR Cal |, FH: 0xe003db8b MKDI R Cal |, DH: 0x3f b1b914/hh
EOOKUP Cal |, DH: 0xe003db8b/ Trust edQSL. spec| GETATTR Cal |, FH 0x3fb1lb914
LOOKUP Reply Error: NFS3ERR_NOENT GETACL Cal |
CGETATTR Cal |, FH 0x2fbla914 GETATTR Cal |, FH 0x3fb1b914
ACCESS Cal |, FH: 0x2fbla914 GETATTR Cal |, FH 0x36b1b014
CREATE Cal I, DH: 0xe003db8b/ Tr ust edQSL. spec| ACCESS Cal |, FH: 0x36b1b014
SETATTR Cal |, FH: 0x65d9e87c READDI RPLUS Cal |, FH: 0x36b1b014
GETATTR Cal |, FH: 0x65d9e87c READDI RPLUS Reply . ..
READ Cal |, FH: 0x2fbla914 ... GETATTR Cal |, FH 0x39blbf14
WRI TE Call, FH:0x65d9e87c ... ACCESS Cal |, FH 0x39blbf14
COW T Call, FH 0x65d9e87c ACCESS Cal |, FH 0x3dblbb14
LOOKUP Cal |, CREATE Cal |, DH: 0x3dblbb14/contacts.csv
DH: 0xe003db8b/ Tr ust edQSL. spec.in SETATTR Cal |, FH 0x33b1b514
LOOKUP Reply Error: NFS3ERR_NOENT GETACL Cal |
GETATTR Cal |, FH 0x23bla514 GETATTR Cal |, FH 0x33b1b514
ACCESS Cal |, FH 0x23bla514 READ Cal I, FH: 0x39b1bf14 ...
CREATE Cal |, WRI TE Cal |, FH: 0x33b1b514 ...
DH: 0xe003db8b/ Tr ust edQSL. spec.in COW T Call, FH 0x33blb514
SETATTR Cal |, FH: Ox67d9ea7c GETATTR Cal |, FH 0x21bla714
CETATTR Cal |, FH: 0x67d9ea7c ACCESS Cal |, FH 0x21bla714
READ Cal |, FH: 0x23bla514 ... CREATE Cal |, DH: 0x3fb1b914/tqgslwi z. h
WRI TE Cal |, FH: 0x67d9ea7c ... SETATTR Cal |, FH 0x35b1b314
CGETATTR Cal |, FH 0x35b1b314
COWM T Cal |, FH 0x67d9ea7c READ Cal |, FH:0x21bla714 ...
WRI TE Cal |, FH 0x35b1b314 ...
COW T Cal |, FH 0x35b1b314

Table 1. Two cp NFS trace headers. The first one copies 3 files into
a directory, while the second one is a recursive copy. These traces illus-

trate that workloads repeat some elements of the trace, with one region be-

ing underlined. However, the repetition of symbols is not strict and danno

be captured by a finite state automata model. There is sufficient variability

that warrants a fuzzy or probabilistic pattern recognition algorithm such as

reader understand the traces.

an HMM. Figure shows only the cliertserver requests, not the responses.
The sole exception is that of responses to LOOKUP since they will help t

ation, as seen in Table 2. Our method should have the power
to ignore this extra operation since that operation must not
be used for discrimination. A variant of the HMM called
the profile HMM [8] offers exactly this ability, vianon-
emitting (or delet§ states. Therefore, we conjecture that
profile HMM will be a good method to use for classifying
NFS traces. In the rest of this section, we first outline the
theory behind the profile HMM and then describe the work-
flow of our workload identification methodology.

Cp contacts.csv con.csv

ACCESS Cal |, FH: 0xe003db8b

LOOKUP Cal |, DH: 0xe003db8b/ con. csv
LOOKUP Reply Error: NFS3ERR_NOENT
LOOKUP Cal |,

DH: 0xe003db8b/ cont act s. csv

LOOKUP Reply, FH:0x71d9fc7c

GETATTR Cal |, FH: 0x71d9fc7c

ACCESS Cal |, FH 0x71d9fc7c

CREATE Cal |, DH: 0xe003db8b/ con. csv
SETATTR Cal |, FH: 0x58d9d57¢c

GETACL Call

GETATTR Cal |, FH: 0x58d9d57c

READ Cal |, FH: 0x71d9fc7c ...

WRI TE Cal |, FH: 0x58d9d57c ...

COWM T Cal |, FH 0x58d9d57c

3.1 Profile HMMs for Modeling Opcode Traces

It is well known and empirically verified, e.g. Table 1,
that opcode traces of the same command are often very sim-
ilar but not exactly the same. Itis also known that traces cor
responding to different commands are dissimilar. These ob-
servations motivate the development of mathematical mod-
els that are capable of discovering a command/workload by
merely looking at the trace it generates (e.g., opcode se-

cp contacts.csv dir/con.csv
LOOKUP Cal I, DH: 0xe003db8b/ di r
LOOKUP Reply, FH: 0x0eb18814

ACCESS Cal I, FH: 0x0eb18814

LOOKUP Cal |, DH: 0x0eb18814/con. csv
LOOKUP Reply Error: NFS3ERR_NOENT
LOOKUP Cal I,

DH: 0xe003db8b/ cont act s. csv

LOOKUP Reply, FH: 0x71d9fc7c
GETATTR Cal |, FH: 0x71d9fc7c

ACCESS Cal |,

FH: 0x71d9f c7c

CREATE Cal |, DH: 0x0eb18814/ con. csv
SETATTR Cal I, FH: 0x14b19214

GETACL Cal |

GETATTR Cal |, FH: 0x14b19214

READ Cal I, FH: 0x71d9fc7c ...

WRI TE Cal |, FH:0x14b19214 ...

COW T Cal |, FH: 0x14b19214

Table 2. Two cp NFS trace headers. The second one differs from the
first in an extra LOOKUP operation (underlined), showing the need for a

methodology that can suppress or ignore certain elements in traces. Profile

HMM is one such candidate. Figure shows only the clieserver requests,

not the responses. The sole exception is that of responses to LOOK&#P sin

they will help the reader understand the traces.



guence), and checking for its similarity with prior traces load by measuring how well its opcode sequence makes the
of the same command with various arguments. The prob-HMM to make high-frequency transitions.

lem of constructing such models is complicated as there is A profile HMM is a special type of HMM with states and

no unique trace for every command. Similar issues arise ina left-to-right state transition diagram specifically dgsd,
many other areas, notable among them being computationahs explained in Section 3.4.2, to efficiently remember sym-
biology. The study of designing efficient sequence match- bol matches as well as tolerate chance mutations (i.e., in-
ing algorithms has received a significant impetus from com- serts and deletes) in observed symbol sequences. Unlike a
putational biology where one needs to align a family of fully connected state graph of a traditional HMM, the pro-
many closely related sequences (typically genetic or prote file HMM'’s left-to-right transition graph enables very fast
sequences). These sequences diverge due to chance muté{( N') matching of a test sequence against known workload
tions at certain points in the sequence while, at the samepatterns.

time, conserving critical parts of the sequence. In this paper, we consider two specific problems where

The similarity of two symbol sequences can be measuredexisting sequence-matching techniques are applicablke. Th
via the number of mutations needed to make them identical,first problem we consider iworkload identificationwe are
also called thedit distance Hence, to measure the similar- told that samples are only from one workload but not told
ity of a sequence to a set of sequences, one could first aligrwhich one. Can we say which workload it is from? The
them to be of the same length by adding, deleting or re- second problem ignnotation we are told that workload ran
placing the minimal number of symbols, and then use the sequentially one after another. Can we mark the boundaries
smallest edit distance. when the workloads were switched?

As of today there are quite a few techniques for se- In the following sections we formalize the above intu-
guence matching, ranging from deterministic [13] to proba- itions and then discuss their application to modelling op-
bilistic approaches [6]. Deterministic approaches aretbas code traces.
on dynamic programming, which often leads to algorithms
that have prohibitively high time complexity for large sym- 3.2 A Brief review of HMMs
bol sequences®(N") to match with r sequences, each of

length N. Probabilistic approaches su.ch as Profile H.IVI_M.s An HMM is defined by an alphabet, a set of hidden
[6] have emerged as faster alternatives to deterministiCgiates denoted by, a matrix of state transition probabili-
methods and have been proven to be very effective for com-jes 4 a matrix of emission probabilitie, and an initial

putational biology problems. The key observation behind ¢t4te distributionr. The matrixA is |Z| x | Z| with individ-

our work is that trace-based workload identification and an- yal entriesA,,,, which denotes the probability of transiting

notation maps well to the sequence-matching problem i, siatey from w. The matrixE (1Z| x ||) contains entries

computational biology, and hence can benefit from simi- E,:, which denotes the probability of emitting a symbol
lar techniques. Profile HMMs are special Hidden Markov ; - s> \while in hidden state. Let \ be the model’'s param-

models (HMMs) developed for modelling sequence simi- eters; these depend &h Z, A, E andr and hence written
larity occurring in biological sequences. Next, we provade ¢y — (%, Z, A, B, 7). If we see a sequenck, an HMM

high-level intuitive understanding of HMMs, profile HMMS 4, assign a probability to it as follows (assuming a model
and their use for sequence matching. 2):

An HMM [23] is a statistical tool that captures certain
properties of one or more sequences of observable sym- PX[A) = ZHAZWkHE%Xk
bols (such as NFS opcodes) by constructing a probabilis- ok
tic finite state machine with artificial hidden states respon The (inner) product terms arise from the probabilities of
sible for emitting those sequences. During training, the transition from one state:{) to another statez( ;) in the
state machine’s graph and its state transition probadsliti Sequence of states under consideration whereas the (outer)
are computed to best produce the training sequences. Lategum of terms arises from having to sum all the possible
the HMM can be used to evaluate whether a new unseerways of emitting the sequencg through all possible se-
“test” sequence is “of the same kind” as the training data, quence of states. There is an iterative procedure based on
with a score to quantify confidence in the match. The test expectation maximization algorithms for determining the
sequence gets a higher score if the HMM has to traverseparameters, from a training set [23]. Popularity of HMMs
higher-probability edges in its state machine to produae th stems from the fact that there are efficient procedures such
sequence. Thus, the HMM’s state machine encodes theas(a) Viterbi algorithm[23]) to compute the most proba-
commonality among various opcode sequences of a giverble stateZ given a sequence(, i.e. computeZ to max-
application workload by boosting the probabilities of the imize P(Z|X) (b) forward and backward procedurg23]
corresponding state transitions. It identifies a new work- to compute the likelihood?(.X') and(c) Expectation Maxi-
mization proceduref23] to learn the parameter§4, E, 7)



given a dataset of independent and identically distributed require the notion of multiple alignment, which generadize

sequences. the notion of alignment to more than two sequendéal-
tiple alignment is defined as the s&t = {57, 55,..., 5}
3.3 Problem Definition where, as beforeS; is obtained fromS; by inserting “-”

states so that the length of all the resultingequences are
At this point we can state the problem more formally as equal, sayn. Multiple alignment can be visualized as a

follows. Let{S;,Ss,...,S,} be asetof traces obtained by » x n matrix where each row consists of a specific string
executing- times a particular workload, say’. The traces  and each column corresponds to specific position in the
are different as they are obtained by executing the workloadalignment. Each matrix entry can take valuesin “—".

with different parameters; they may also be different due to Multiple alignments are useful in detecting similar subse-
some stochastic events in the system. Jtiesymbols;; guences which remain conserved in sequences originating
of the sequencé; is generated from the alphahbgtof all from the same family. Thus multiple alignment can decide
possible opcodes. Let the sequenzee of lengthn;, i.e the membership of a given new sequence with respect to
the index; varies froml to n,. We consider the task of a family represented by the multiple alignment. Figure 1
constructing a model on thesesequences such that when shows an alignment of ten traces of opcodes generated by
presented with a previously unseen sequeicahe model aneditworkload. Each symbol in the alignment represents
can infer whethelX’ was generated by executing workload a particular opcode. The alignment shows regions of high

w. conservation where more than half of the symbols in the col-
_ _ o umn are present. These conserved regions capture the simi-
3.4 Profile HMMs for identifying workloads larity between the traces of this workload. When identifying

a previously unseen trace generated by the same workload,
We will begin by recalling a few definitions related to se- it would be desirable to concentrate on checking that these
quence alignment. We will then discuss profiles and Profile more conserved columns are present.

HMMs, finally ending with a scheme for classifying work- One can extend the dynamic programming based solu-
loads using them. tions for the pairwise case to the problem at hand. Un-
3.4.1 On Aligning Multiple Sequences fortunately they are prohibitively expensiv@(n") in both
LetS; = si1si2...sin; (i = 1,2) be two sequences of  time and space [13], and are not very practical for detect-
different lengths:; andn, generated from an alphabgt ing large file operation sequences (100s to 1000s) typical in

An alignmentof these two sequences is defined as a pair networked storage workloads.
of new equal length sequencés = s, ...s%, (i = 1,2) 3.4.2 Introduction to Profile HMMs

obtained fromS; (S2) by inserting “-” states inS;(Sz) to A profileis said to be a representation of a multiple align-
record differences in the two sequences. ek the length  ment (such as that of multiple proteins that are closely re-
of S§ (which is also that ofS3) with (n1 + n2) > n > lated and belong to the same family). One can attribute
mazx(ni,ng). We will call sy, and sy asmatchedif for the slight differences between family members to chance
somej , si; = Sk, $3; = sz On the other hand i}; = mutations, whose underlying probability distribution st n
‘=" 53; = sa;, then we will say that there isdeletestate  known. It has been empirically observed that HMMs are
in S; andinsertstate inS,. extremely useful in building profiles from biological se-

Theglobal alignment problem is posed as that of com- quences [6].
puting two equal length sequencg&s and.S5 such that the
matches are maximized and insertions/deletions are mini-profile HMMs: For modeling alignments, a natural
mized. This problem can be precisely formulated for suit- choice for hidden states correspond to Insertions, Delstio
ably defined score functions and solved by dynamic pro- and Matchings. In a Profile HMM, each insert stéteand
gramming based algorithms [20]. Global alignment is a match statel/; has a nonzero emission probability of emit-
good indicator of how similar two sequences are. ting a symbol, whereas the delete statedoes not emit a

The problem ofocal alignmenttries to locate two sub-  symbol. The non-emitting states make Profile HMMs dif-
sequences one from each string such that they are very simferent from traditional HMMs. From an insert state, it is
ilar. This problem can be formulated as that of finding two possible to move to the next delete state, continue in the
subsequences which are maximally aligned in the globalsame insert state or go to the next match state (Figure 2).
sense for a suitably defined score function. It also admitseach diamond, circle, and square represents insert, delete
a dynamic programming based algorithm [26] and can be and match states respectively. From each insert, delete or

solved exactly. match state, the possible state transitions are as follows:
However both global and local alignment are defined for I, — D1, I, M,

a pair of sequences. As mentioned before, our interestisin D, — D,.y, I, M.,
inferring similarities in more than two sequences. Thid wil M; — Dy, I, M.



- OGAGLLGOAA GOGG- - AACT 5555- - GGVY GDDS WW5- - - - - - - 5BWGL- - 0§

----------------------------- Lo- - - - WW- - - - - - - - - G- -G
-LWWESRRLL - -G6G- - LLOC SS555000G0GVY S58558558WWSHLL S55WWssG--0G
S- WWEERRLL AAGOG- - LLOO 5555 0000VY - - -5WWSH5LL 55 WWwWss5G- -G
SEWWEEREOOVY AACGOLLLLOC SS5550000VY - - -5WWSHLL 55WWss5o- -0
- WWEEBRRLL OG- - - - LLOO S55550000VY - - - 5WWSHLL 55WWss5G--0G
-SEWWLLOGLL GGGG- ---0C 85855--0CGVY GDD- - WGG- - - - - - AAG- -G
SEWWLLOOLL Gooh- - - - 00 B555- - 00OVY O LDD- - WGEG- - - - - - BGG- - A
SEWWLLOOLL GooG- - - - 00 5555- - 00GVY O GDDE WWS G- - - - - - GGG - - A
- RBWW- - OG- - GGG6G- - - - 00 5555--0GVY GDDSEWWS G- - - - - - GGGOAG

Figu rel. an example of multiple alignment of ten NFSv3 traces generated ledamvorkload using the wireshark [5] tool. Here, G is getattr, S setattr, L lopkup
R read, W write, A access, D readdirplus, C create, M commit, V remove, etc. Aligned columarmatated at the bottom by a '+’ if the opcodes in those columns are

highly conserved. These columns will be modeled as match states in the pifdfile

Profile HMMs are essentially.eft-Right HMMs (Fig- v and EN,,; denotes the number of emissionstajiven a
ure 2). Unlike fully connected state machines, Left-Right stateu(see [6]).
HMMs have a more sparse transition matrix and are of- 3.4.3 Profile HMM for identifying workloads
ten upper triangular. Inference on such machines is much Let us now revisit the problem as defined in subsection
quicker and hence often preferred in many applications such3.3. Assume that we have pretrained many Profile HMMs,
as speech processing [23]. each for a workload. Now consider the problem of identify-
ing the underlying workload when a new trace is presented.
Using Profile HMMs one can consider solving such a prob-
lem by the decision rule

y(X) = argmazx P(X|\)

where X is the unseen sequence, denotes the model for
the kth workload andy(X) is prediction for the underly-
ing workload which generated the sequer€e Using the
forward-backward procedure we can compute this decision
rule easily. This can be understood as globally aligning the
profile with the unseen sequence. Though there is no con-
fidence measure with respect to prediction, the input is re-
jected (no prediction is made) if a confidence threshold is
not crossed.

It is straightforward to adapt the traditional HMM algo- Now consider the problem of annotating a huge trace of
rithms such as Viterbi algorithm, Forward-Backward pro- opcodes generated by sequentially running workloads. As
cedure and Expectation Maximization based learning pro- before assume that we have pretrained models of individual
cedure [23] to profile HMMs [6, 8]. workloads. This would be equivalent to computing a local

These models provide flexibility in modeling closely re- alignment of each profile with the bigger trace.
lated sequences by the choice of more complex score func- It is thus clear that the Profile HMM architecture chosen
tions. This has made profile HMMs extremely popular for should be versatile enough to solve such problems. The
comparing biological sequences. architecture shown in Figure 2 will require some tweaking
or the inference mechanism needs to be modified for such
problems.

Figu re 2. The transition structure of a profile HMM [8]. For example,
from an insert state (diamond), we can go to the next delete state (circle),
continue in the insert state (self loop) or go to the next match state (réefang
Note that while multiple sequential deletions are possible by fotiguhe
circle states, each with a different probability, multiple sequential insextion
are only possible with the same probability

Learning a Profile HMM from data:  The parameters of
profile HMMs are the emission probabilities and the state
transition probabilities. This is easy to compute if one A Specific Implementation for Profile HMMs:  For our
knows the multiple alignment. In such a case, the state tran-work here, we have used the open source HMMER [7] im-
sition probabilities are given by, = ZA# and the plementation of a profile HMM whose architecture (Figure

uv

I - _ " BN, 3) allows flexibility in deciding between global and local
emission probabilities are given lay,; = ENu, where  gjignments by adjusting the parameters of self-transition
AN, denotes the number of transitions from the state involving nodesN (at the beginning)(' (at the end), and



provided in [9] for this purpose.

3.5 Workload Identification Workflow: An
Overview

In this section, we give an overview of our methodology
using profile HMMs. Figure 4 gives the workflow for build-
ing a profile HMM model of a given workload. We need
to supply one or more opcode sequences corresponding to
traces of different runs of an application workload. These
Figure 3. Architecture of HMMER [7]. Squares represent match states opcode sequences need to be encoded into a limited-sized
2 e, damonde sre et o nered i e (V00), alphabet that the HMM model works with.  This is done
noDtol or I to D transitions in HMMER. by the alphabetizer module. The encoded sequences pass
through a multiple alignment module (explained in Sec-
J (in between). These self-transitions model the unalignedtion 3.4.1), which creates a canonical aligned sequence for
(or “ignored”) part of the sequences. The set of states with training. We use an open-source tool called Muscle [9] for

their abbreviations are as follows: this purpose. We then use HMMER [7] to generate a pro-
file HMM model of the workload based on the aligned se-
M, | Match stater, emitter. guences.
D, | Delete stater, non-emitter. To annotate the occurrences of a set of trained work-
I, | Insert stater, emitter. loads in an arbitrary NFS trace, we extract the NFS opcode
S | Start state, non-emitter. sequence from the trace, alphabetize it and pass it to the
T | Terminal State, non-emitter. HMMER'’s pattern search tool calldtmmpfamalong with
N | N-terminal unaligned sequence state the profile HMM models of the workloads that we want to
in the beginning of a sequence, emitter. identify within the trace. The tool outputs the indices of
B | Begin state (for entering main model), the subsequences that it matched with various workloads
non-emitter. along with a fractional score (in the range 0 to 1) indicat-
E | End state (for exiting main model), ing its confidence in the match relative to other workloads.
non-emitter. We have written a script to post-process this output to pro-
C | C-terminal unaligned sequence state duce the final annotation of the test sequence. The post-
at the end of a sequence, emitter. processing phase involves the following steps:
J | Joining segment unaligned sequence state,
emitter 1. Merge two contiguous matches of the same workload.

If the loop probability modeling the transition between
N — N is set to0, all alignments are constrained to start
at the beginning of the model. If the probability of transi-
tion fromC — C'is set to0, all alignments are constrained
to end at the last node of the model. Settifig— J to 0 3. Again, merge any two new contiguous matching sub-
forces a global alignment. If it is not set o the model sequences of the same workload.
can start at any point in a larger sequence and end some
distance away for effecting local alignments. This option 4. |f more than two workloads are reported for the same
can be used for the sequence annotation task mentioned be-  region, report the workload with a higher score.
fore by aligning the model locally against a large sequence.
Furthermore, the transitioi — J can be used to control .
the gap between local alignments. One can do the reverse4 Evaluation
i.e., globally aligning a smaller sequence to a part of the
model, by controlling the transitions betwen— M and In this section, we illustrate the capabilities of our pefil
M — E. HMMER is an extremely versatile and power- HMM based methodology including its ability to identify
ful sequence alignment tool. It can thus be very useful in and mark out the positions of high-level operations in an
locating sequences of opcodes from traces. unknown network file system trace as well as its ability to

To learn the parameters of the model, it may be useful isolate multiple workloads running concurrently. We also
to use a small set of multiply aligned sequences. We haveevaluate the training and pattern recognition performance
used an open source implementation of multiple alignment of the methodology via micro-benchmarks.

2. Remove the matching subsequence with very low
score (less than 0.1 percent of the average score for
the matching subsequences of the same workload).
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Fi gure 4. Profile HMM Training and usage workflow. Given a set of opcode traces of a giveklamdw with various parameters, this workflow produces a profile
HMM model in the filew.hmm Muscle and HMMER are existing open source tools, whereas the alphabetizevsirpiqressor are modules that we developed. The
bottom flow represents trace identification, where we input the workload mdeledtoped by the training workflow above into the HMMER search engine.

4.1 Experimental Setup and Training Method build the profile HMM for the command with increasing
numbers of randomly selected traces as outlined in Figure 4,
) each time cross-validating its recognition quality by itegpt

For our evaluation, we choose several popular UNIX \yith the remaining traces. We stop when the improvement
commands and user operations on files and directories ag, the model quality metric diminishes below a threshold.
our application workloads:tar, untar, make, edit, copy, e found that ten traces of each command were sufficient.

move, grep, find, compileThe UNIX commands access e call those sequences as training sequencesand the
subsets of 14361 files and 1529 directories up t0 7 levelsyegt agest sequences

deep stored on a Linux NFSv3 server from one or more
Linux NFSv3 clients. For a more realistic evaluation, we L
also incorporated TPC-C [22] workloads. TPC-C is an 4.2 Workload Identification
OLTP benchmark portraying the activities of a wholesale
supplier, where a population of terminal operators execute  Our first experiment evaluates how well profile HMM
transactions against a warehouse database. Our TPC-C cortan identify pure application-level workloads based ort pas
figuration used 1 to 5 warehouses with 1 to 5 databasetraining. We feed the test sequences to the trained profile
clients per warehouse. The database had 100,000 items. HMM for identification. Table 3 shows the results in the
The NFS clients are located on the same 1 Gbps LAN form of a “confusion” matrix. Each row of the matrix indi-
with NFS client-side caching enabled. The caching effects cates a test command and each column under the “models”
across multiple experiments were eliminated by mounting umbrella indicates a command for which profile HMM got
and unmounting the file system between each experimenttrained. Each cell indicates how well the profile HMM la-
We capture the NFS packet trace at the NFS server ma-beled the sequence as the given command, the ideal being
chine’s network interface using the Wireshark tool [5], and 100%. Commands were recognized correctly much of the
filter out the data portion of the NFS operations. For all ex- time with a few exceptions.
periments in this paper, we only use the opcode information  For instance, about 9% of treopyworkloads are mis-
in the NFS trace. Hence, we use the tdratein the rest labeled aedit workloads. These were primarily single file
of this section to refer only to the opcode sequences. copies and they share similarities withit workloads that
We build profile HMMs for each of the UNIX commands  we trained with; they both exhibit an even mix of reads and
as follows. First, we run the UNIX command many times writes. Copies of multiple files or recursive copies were
with different parameters and capture their traces. The-num not confused withedit workloads. The results also show
ber of captured traces for each command along with theirthat 11.3% ofyrepworkloads are getting mis-labeled tas
average length in opcodes, is shown in Table 3. Next, weworkloads. Upon close inspection, we discovered that many



Trace Models
Command | make ‘ find ‘ grep ‘ tar ‘ untar ‘ copy ‘ move ‘ edit ‘ tpcc
make 91.7 12 1.2 2.4 3.6
find 91.8 2.1 3.1 1 2.1
grep 1 72 22 5
tar 100
untar 1.2 98.8
copy 1 1 6 82 1 9
move 5.6 0.8 0.8 2.4 89.6 0.8
edit 100
tpce 100

Table 3. Recognizing a single workload using the profile HMM on a test opcodeesegu Confusion matrix gives entries indicating the percentage of instances
recognized correctly; the rows add up to 100%. The profile HMM recognized most caisroamectly.

of the single-filegrep commands (“grep foo bar.c”) were ’ ‘ TPC-C ‘ Postmark\
being identified asar’s. The combined multiple alignment TPC-C 100% 0%
model shows that the initial subsequencesof where a sin- Postmark 0% 100%

gle file is being read from beginning to end, is very much
like that of a single-filgrep. That could have led to the pro-
file HMM making an error. The diversity of the training set
is critical. For instance, when we manually picked ¢gnep
training traces to have diverse command traces, we couldwere attempted after training with 4 traces. The TPC-C

Table 4. workload identification accuracy with TPC-C and Postmark
loads.

improve the accuracy from 72% to 85%. traces were from the previous experiment. The results of
Consider another exampléind andtar need to traverse  the workload identification are given in Table 4.
a directory hierarchy in its entirety, except that in ourezas In both cases, there were no misclassifications. This ex-

tar additionally reads the file contents and writes the tar file. periment shows the capability of profile HMMs in discrim-
This distinction was enough for profile HMM to success- inating between two complex and large workloads.

fully distinguishfind from tar in 100% of the cases. Over-

all, our methodology is able to distinguish workloads well 4 3 Trace Annotation

based on small differences in their trace patterns.

An interesting result here is that tiygcc workload was
identified correctly 100% of the time. The intuition behind . o .
this result is that, a complex workload contains unique pat- mark ogt the NFS operatlops constituting various com-

o . . mands in a long but not earlier seen NFS packet trace. It
terns in its traces that can be accurately recognized. A sim-

: - tells us how accurately it can detect the start and end of
ple workload may not have a strong signature in its traces’commands Ust by observing the NES operations. We run
leading the profile HMM to mis-identify it occasionally. J y 9 P '

sequences of commands to simulate a variety of common
Discrimination between TPC-C and Postmark: We user-level activities, collect their NFS opcode traces and
also wanted to see how two large applications can be ac-query the profile HMM to identify the commands and their
curately distinguished using the NFS traces; we selectedpositions in each trace, as outlined in Figure 4. We then
TPC-C and Postmark for this experiment. Postmark [15] compare them with the known correct positions. Profile
is a synthetic benchmark that has been designed to createlMM is able to detect the boundaries of a command’s op-
a large pool of continually changing files and measure the code sequence to within a few opcodes in many cases.
transaction rates for a workload approximating a large In-  Figure 5 shows the trace annotation diagram with both
ternet electronic mail server. the detected and actual command boundaries for a com-
Postmark traces were generated by running the benchimand sequenceuntar;make;edit;make;tar>that attempts
mark 60 times with varying parameters. The file sizes were to simulate the process of downloading the HMMER source
varied between 10000 bytes and 300000 bytes, the fracpackage, compiling it, modifying it, compiling it again,@n
tion of creations vs. deletions was varied between 10% andthen tar'ing up the resulting package. The bottom-most
100%, and the fraction of reads vs. appends was variedbar in the figure shows the actual command boundaries,
between 10% and 100%. Out of this set of traces, 10 werewhile the other bars show the annotation made by the pro-
randomly picked for training, and 50 traces for testing. Sim file HMM. We see that the quality of annotation is high. The
ilarly, 20 traces of previously unknown TPC-C workload NFS operations corresponding to tinetar, the twomakes

Our next experiment evaluates how profile HMM can
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Figu re 5. Visualization of the annotated trace for a sequence of user
commands: gntar; make editmake tar>. The bottom-most bar in the fig-

ure shows the actual sequence in the trace, while the other bars above show
the annotation by the profile HMM. The vertical lines indicate workload tran-
sition boundaries. The visualizations in this figure show that thetatioo

is reasonably accuratenakeis a harder command to classify because it in-
vokes other commands.

andtar commands are accuratelv marked.

unrecognized
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Figu re 6. Overall Trace Annotation Accuracy for a random sequence

of UNIX commands.

We then ran a comprehensive experiment, so that our re-
sults can be more statistically significant. We generaté€d 10

traces, where each trace contained a run from a sequence g
100 commands, each picked randomly from our available
pool of commands. We analyzed the traces using profile

HMM, and annotated each opcode with its identified com-
mand. The results are presented in Figure 6. The annotation

accuracy is a measure of how much of the trace is marked
correctly with respect to start and end of the traces (and un-

related to confusion matrix entries computed for workload
identification). 86% of the opcodes were annotated cor-
rectly; 10% of them were marked as belonging to a wrong

command; and, 4% were identified as not belonging to any
of our commands. Figure 7 shows the results broken down.

on a per-workload basis. Here we notice that opcodes be-
longing togrepandmovewere often incorrectly annotated.
Both these workloads perform poorly in the sampling ex-
periments above as well, implying that their characteristi
patterns are not very unique.

In summary, profile HMMs are able to make use of
subtle differences in workload traces to accurately iden-

tify transitions among workloads and annotate opcodes with
the higher-level operations that they represent. The minor
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make find  grep tar untar copy move edit tpce

Commands

Fig ure 7. Trace Annotation Accuracy on a per-command basis. Note
that it is lower than that for identification as the starting and ending of the
traces have also to be marked correctly.

enough diversity in the selected training traces. Note that
for single workload identification described in 4.2, manu-
ally picking thegrep training traces to have diverse com-
mand traces resulted in accuracy improvement from 72% to
85%. Further work is needed to figure out how to select
traces for improved discrimination.

4.4 Trace Processing Rate

Next, we measure the rate at which the profile HMMs
can process (identify or annotate) a trace by applying it on a
trace of length 50000 opcodes. Such a trace is constructed
randomly using traces in our test sequence set. For identi-
fication, each model in turn reports how many instances of
g family are present in the whole trace as well as a score
that indicates how well it matches with its training set. For
annotation, each model marks out its portion in the trace
and a post-processing procedure decides which workload is
assugned to a segment of the trace (based on a score).

Profile HMMs are not particularly fast — they processed
the trace at a rate of 356 opcodes per second on a Intel
Quad-Core CPU at 2.66 GHz and 3 GB of memory run-
ning Ubuntu Linux, kernel version 2.6.28. We then isolated
each model and measured their performance individually
on the same trace. The results are shown in the “process-
ing rate” column of Table 5. We find that the models differ
markedly in their speedfakeandtpccbeing the slowest).

We see a strong inverse correlation between the speed of the
model and the maximum sequence length of the training
traces. This is understandable: shorter training seqgence
will likely build a profile HMM with fewer states and tran-
sitions. One could speed up the models by choosing shorter
traces for training, provided they do not jeopardize thaeide
tification accuracy. This is a tradeoff worth exploring i th
future.

discrepancies observed were likely caused by not having
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Trace # Test Trace Length Processing rate
Command | Traces | min. ‘ mean ‘ max (opcodes/sec) edit
make 84 23 2653 | 32175 2971 § ——fe=tpec
8
find 98 33 | 10683 | 66093 135893 g —=untar
grep 100 19 | 4784 | 24024 121701 E —Hemtar
tar 98 67 | 1255 | 19578 49430 $ oo +find
o
untar 81 85 | 2082 | 28013 24680 a e S make
copy 100 35 | 8665 | 97789 21408 10 S Brep
5 5 2 29 56 t] o e et S T B - Jrosspusauf s CORY
move 125 1A 10 20 30 40 S50 60 70 B0 90 100  egeemove
edit 127 657 | 670 687 22177 Trace prefixLength (%)
tpce 24 1289 | 12665 | 61430 565

Table 5. Trace processing rates. Since each model has different number Fig ure 9. sensitivity of profile HMM'’s accuracy to the length of the

of states in its profile HMM, the processing rates differ. trace prefix analyzed for various commands. The Y-axis indicates the percent

100 of runs (out of hundred runs) where the command was correctly recognized.
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Therefore, the profile HMM requires a large fraction of its
trace to be examined to correctly identify it.

The characteristic patterns of a workload may be concen-
trated at some locations for certain commands, while they
may be distributed better for other commands. Having char-

10 20 30 40 50 B0 70 80
% of Trace (Random Sample)

90 100 e move

acteristic patterns at various locations in the trace isulise
for online behavior detection, since there is a larger ilikel
hood of identifying a workload from a random sample. To
understand the distribution of characteristic patternsun
workloads, we tested the profile HMM with varying length
prefixes of traces. Figure 9 shows the results. We see that
the predictive value of small prefixes of traces is quite high
For some commands likeopyandmove the end of a trace
seems to have strong characteristics.

This evaluation suggests that in real scenarios, some
workloads may be identified by examining just a small snip-
pet, while other workloads may need a large fraction of their
traces to be analyzed before identification.

Figure 8. Sensitivity of profile HMM to the length of the trace sam-
ple analyzed for various commands when sample picked randomly from the
whole trace. Y-axis indicates the percent of runs (out of hundred runs) where
the command was correctly recognized.
4.5 ldentification of Randomly Sampled Patrtial
Traces

In a real system, we will not have the entire trace of a
single command or a neatly ordered sequential set of com
mands to analyze. They will typically be interleaved be-
cause of concurrent execution. Therefore, we must be able#.6 Automated Learning on Real Traces
to detect an application operation just by observing a snip-
pet of a command’s trace. Further, for online behavior de-  Validating our approach using real traces from real
tection and adaptation, we should be able to quickly detectdeployments is important. Our approach is based on
an application operation, which implies that we should need a classification-based methodology that requires that the
to analyze small amounts of traces to identify workloads. training data be labeled. Unfortunately, real traces goe ty

Our next experiment evaluates how much of a randomly cally not labeled with workload information. Therefore, we
sampled NFS trace the profile HMM methodology needs to will neither be able to train with the real trace nor be able to
be able to correctly recognize a high-level operation. For validate our results.
this experiment, we feed the profile HMM with contiguous To tackle this problem, we use the LD_PRELOAD en-
substrings of the pure test sequences — of various lengthss/ironment variable on the client to interpose our own li-
and at random locations in the full sequence — and mea-brary that intercepts all process invocations (“exec” fgmi
sure how often it detects the command correctly. Figure 8 of calls in UNIX) and forces a sentinel marker in the trace
contains plots of profile HMM’s sensitivity to trace snippet by doing an operation that can be spotted. Whenever we
size for various high-level commands. As the graphs indi- see an “exec”, we “stat” a non-existent file — the file name
cate, profile HMM is able to recognize most workloads with encodes the identity of the exec’ed program. The NFS re-
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] | gcc| cat| mv[ Id]|
gcc | 805 19| 09| 16.8
cat 3.1|779| 08| 18.2
mv 06| 05| 625 36.4
Id 13.3| 12| 1.7 838
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o
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Table 6. workload identification accuracy on live traces.

sponse that the file does not exist (ENOENT) with the coded
filename is enough for us to mark the boundaries of the trace
segment generated by each of the command invocations.
Here we need to ensure that the invocation is “atomic”, i.e.,
it does not result in exec’ing of other programs that are of
interest independently for identification (otherwise, wié w
mark a only a subtrace as belonging to the invocation and
mark some part of the following trace as belonging to the erate a small amount of traces, sucltasandmvpose dif-
subprocess). We used an open-source tool c&8lembpy  ficulties for our methodology. In this experiment, the outpu
[21] and modified it to suit our purposes. of thecatcommands were fddev/nulland for a single spe-

As an example, we used the compilation of Linux 2.6.30 cific file; because of client-side caching, the traces did not
source as the generator of a real trace. We instrumentedhave a strong signature. We need traces with good signa-
the client with the above interposition library, collectibe tures (likegcg) to get good results. This is acceptable from
traces for a certain amount of time and constructed oura practical standpoint as bigger application workloads, in
training trace data automatically. Our sentinel markers in general, are of more interest in the systems community.
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Figure 10. online learning on live traces.

the trace also give us an easy way to validate our results. The value of the profile HMM as a practical tool will
The following commands were detected in the Linux be significantly enhanced if we can automatically generate

source compilation on the Ubuntu 9 systertgcc”, “rm”, a labeled trace, with each of its constituent workloads de-

“cat”, “‘mv”, “expr”’, “make”, “getent”, “cut”, “mkdir”, marcated, for training. The LD_PRELOAD mechanism is

“bash”, “run-parts”, “sed”, “date”, “whoami”, “host- away to do this. On new clients or clients running new ap-
name”, “dnsdomainname”, “tail”, “grep”, “cmp”, “sudo”,  plications, the interposition library could be introducded
“objdump”, “ld”, “nm”, “objcopy”, “awk”, “update- generate new training sets. The library could subsequently
motd”, “renice”, “ionice”, “basename”, “landscape- be removed after sufficient training data has been generated
sysinfo”, “who”, “stat”, “apt-config”, “Is”. Since com-

mands like “make” initiate, for example, many gcc com- 4.7 Concurrent Workloads

piles, it is not possible to demarcate the beginning and end

of the trace that “make” contributes as we are interested in = gporaq storage systems almost always serve multiple
‘gcc” as a workload in itself. We eliminated such compos- ¢oncyrrent workloads. Therefore, the server-side trage co
ite commands and those that do not contribute to NFS tracegins the trace sequences of multiple application-levet-op
(eg. “date”), and ended finally by selecting 4 commands in

the live trace. . S ) shared storage system may serve files to thousands of clients
_For v_vorkload |dent|f|_cat|on, we cons!de_red Fhe 105 i an enterprise deployment, the NFS trace contains client
minute live trace of the Linux source compilation discussed |ps that can be used to tease the interleaving apart. There-
earlier with training on approximately 3 minutes of the (,re \ve need automated tools only to separate out the traces
trace. The results are given n Ta'?'e 6 ) due to requests from a single client. Typically, the number
To understand how learning is improved with larger o ooncurrent applications at a single client invoking NFS
number of training traces used, we chose 30 sec, 40 S€Coperations to the same backend server are small.

50 sec, 1 min, 2 min, 3 min, 4 min and 5 min durations of * prafile HMM's ability to detect high-level commands
the trace and used the specific workload found in these duraz.o 1, small snippets of file system operations helps iden-

tions for training that workload. From Figure 10, we notice tify the various workloads running concurrently. Our next

that the accuracy of the workload identification improves experiment evaluates this ability. We run sequences of com-

with increase in the number of training sequences used, thus,ands from 2 to 6 NFS clients accessing the same NFS
demonstrating learning in the system. Commands that 9€Nserver, capture the NFS opcode trace at the server's net-

P — . . work interface, remove the client ID (to simulate the effect
landscape-sysinfo” provides a quick summary about the mahin . .. . .
status regarding disk space, memory, processes, etc. “rsi-pans a pf multiple appllcat|ons from the same client), and feed it
number of scripts or programs found in a single directory. into the profile HMM for marking the commands’ opera-

ations interleaved with each other in time. However, while a
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tify workloads using very small trace snippets. Finallye th
profile HMM seems to be slow compared with the typical
rates of NFS operations at a server, hampering online anal-
ysis. Many of these limitations may not be fundamental in
nature, but pointers to future work.
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6 Conclusions and Future Work

#Concurrent Streams

In this paper, we have presented a profile HMM-based
@ correctly annotated @ incorrectly annotated 8 unrecognized meth0d0|ogy for analySiS of NFS traces. Our method is suc-
cessful at discovering the application-level behaviohere
acteristics from NFS traces. We have also shown that given
a long sequence of NFS trace headers, it is able to annotate
regions of the sequence as belonging to the applicatiohs tha
on sequences. We compare the esult wih e sequencel 125 EEn Tned wil 1 can dent and arvotte bt
identified manually based on the source IP address. Fig- =a .

. . Finally, we demonstrate that small snippets of traces dre su
ure 11 shows the quality of the annotation. The amount of _. . . o ; .

. . ficient for identifying many workloads. This result has im-
concurrency determines whether there will be long enough ortant consequences. Because traces are goind to get aen-
snippets for profile HMM to accurately annotate the trace. grated faster t%an one.can analvze them be?n gble ?o ingfer
As expected, for a concurrency level of 2 or 3, the results meaningful information from e)r/iodic ran’dom gam ling is
are acceptable, but gets worse beyond that. The interestin% ng ) perio ping

ery important for effective analysis.

in n here is that the incorr nnotation n ' -
po tto o.te ereis t atF e Incorrect a .otato s do not Although profile HMM methodology looks promising
increase with concurrency; only the proportion of unrecog- . . S94
for trace analysis, our experience indicates that we have

nized sequences do. The profile HMM's ability to explicitly ot leveraged all its capabilities. For instance, we have no

tag unrecognized sequences as such helps the user rely on ge -ap S ! ’

. used all the information that is available in the NFS trace.

'ts output. There is a rich amount of data available in the form of file
More than the exact marking of regions, the identifica- \ .

. . ) : . names and handles, file offsets, read/write lengths and erro

tion of constituent workloads in a mixed-workload scenario : 2

. . . responses that throw more light on the application work-

is itself of good value. This is because, for the typical ad- loads. We have to investigate how to incoroorate this in-

ministrator, a more compelling use case than unraveling theforma.tion into a form amengable for multiple aﬁi nment and

opcode sequences of interleaving workloads is to identify rofile HMM. This will be the first ste ipn extgndin our

which workloads are running in a given interval of time. \?vork ' P 9

Note that TPC-C, a very concurrent workload, can be identi- i

fied quite successfully as reported earlier (Sections 433, 4 NFSv4 introduces client delegations, offering clients the
- ability to access and modify a file in its own cache without

o talking to the server. This implies that an NFSv4 trace may
5 Limitations not have all the information about application workloads.
Investigating how profile HMMs work on NFSv4 traces is a
During the course of our evaluation, we discovered a few C1€ar extension of this work. _
We also believe that our methodology is general enough

limitations with this methodology. First, training the too .
requires a diverse and representative sample of workloadsthat We can apply it to other source data such as network

This is a fundamental characteristic of machine learning MeSSages, system call traces, disk traces and function call
methodologies. Second, the open-source tools that we use8'@Phs: This methodology can be a foundation to tackle use
to build our solution are from computational biology. The Cases in areas such as anomaly detection and provenance
current off-the-shelf solutions have a limited alphabetcsp mining, which are building bl_OCkS for next-gener.anon Sys-
which may not be completely appropriate for systems appli- tems management tools. Finally, we will look into other_
cations. However, we believe that there are no fundamentafMachine learning methods that overcome some of the limi-
mathematical limitations in the number of symbols, except @tions of profile HMMs.

that we may have to perform significantly more training if Acknowledgments: We thank Bhupender Singh, Alex
we use more symbols. Third, the level of concurrency at a Nelson, and Darrell Long for reviewing the paper, Pavan
client adversely affected the accuracy of the tool. The fine- Kumar for performing the PostMark experiments, and Alma
grained interleaving resulting from a large number of con- Riska for shepherding the paper with thoughtful comments
current streams can be tackled only if we are able to iden-and guidance. We also gratefully acknowledge support

Figu re 11. concurrent sequences of commands were run from 2 to 6
clients. The graph shows the quality of the annotation.
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