
Copy Elimination in Functional Languages

K.Gopinath and John L.Hennessy

Computer Systems Lab

CIS 034, Stanford University, CA 94305

gopi@sonoma.stanford.edu jlh@vsop.stanford.edu

Abstract
Copy elimination is an important optimization for compiling func-

tional languages. Copies arise because these languages lack the

concepts of state and variable; hence updating an object involves

a copy in a naive implementation. Copies are also possible if

proper targeting has not been carried out inside functions and

across function calls. Targeting is the proper selection of a stor-

age area for evaluating an expression. By abstracting a collection

of functions by a target operator, we compute targets of function

bodies that can then be used to define an optimized interpreter to

eliminate copies due to updates and copies across function calls.

The language we consider is typed lambda calculus with higher-

order functions and special constructs for array operations. Our

approach can eliminate copies in divide and conquer problems

like quicksort and bitonic sort that previous approaches could not

handle.

We also present some results of implementing a compiler for a

single assignment language called SAL on some small but tough

programs. Our results indicate that it is possible to approach a

performance comparable to imperative languages like Pascal.

1 Introduction

Copy elimination is an important optimization for imple-
menting functional languages. Though it is related to the
problem of copy propagation that has been considered in
many compilers [1], the term is used in a more general con-
text where structured values can be updated, copies can be
eliminated across function calls and the computation tree can
be reordered. Because of these additional possibilities, copy
elimination is a hard problem, being undecidable in general.

To efficiently implement functional languages on conven-
tional machines, three main optimizations are required: con-
version, where possible, of lazy/call-by-need into call-by-
value evaluation; call-by-value into call-by-reference evalu-
ation; and doing updates in-place. Our work concerns itself
with the copy elimination that results from the last two parts.

0This work was supported in part by NSF grant CCR 8351269.

Using abstract interpretation, a technique that was pio-
neered by Cousot and Cousot[12] for deriving properties of
programs, Mycroft[10] considered the problem of detecting
when a call-by-need argument can be turned into a call-by-
value argument in the interests of efficiency. Hudak[7] has
also used the technique of abstract interpretation success-
fully to detect updates that can be done in-place by refer-
ence counting when call-by-value arguments are used. How-
ever, his approach does not extend naturally to divide and
conquer problems.

In our approach, we compute the target of an expression,
namely the proper location where the expression should be
evaluated, so that the number of intermediate copies is re-
duced. This requires that all subexpressions also be properly
targeted. We also subsume the problem of updating in-place
to one of computing the target of an update statement. We
have adapted the term targeting from code generation work
where targeting is used to avoid unnecessary moves between
registers by evaluating some values in certain registers. A
good example is the targeting of multiplicand and multiplier
into odd and even registers in certain architectures.

Our approach can eliminate copies in divide and conquer
problems like quicksort and bitonic sort and achieve a perfor-
mance comparable to imperative languages like Pascal. We
present some results of running a compiler for a single as-
signment language called SAL on a set of small but tough
benchmarks in Section 12. The theory can handle higher-
order functions but these are not present in SAL. Call-by-
value evaluation will be assumed but it is possible to handle
other evaluation mechanisms by changing some definitions
in Section 7. We first introduce targeting and the language
considered in the theory, followed by domains and the se-
mantics of target expressions and mention some theoretical
results that are useful in copy elimination. Some examples of
computing targets are then presented. Next, we develop two
interpreters, one standard and one using target information
and present results on their extensional equivalence. Finally,
experimental results are presented.

2 Targeting

Targeting is the proper selection of a storage area for evalu-
ating an expression. A good selection of targets reduces the
number of intermediate copies since temporaries may not be

1

needed. Previous work[8, 7] on copy elimination has concen-
trated on doing updates in-place but this is not enough in
tackling divide and conquer problems. Consider the follow-
ing simple divide and conquer schema (where cat is the array
catenate operation):

type arr(h) = array[1..h] of T

function f(A : arr(h)) : arr(h) =

if h = 1 then g(A)

else cat(f(A[1..h/2]), f(A[h/2 + 1..h]))

There are no explicit updates here and an efficient compi-
lation is possible only if a compiler can detect that the di-
vide phase creates two non-overlapping subarrays that are
updated across function boundaries without interference from
each other. This is achieved if we discover that the body of
the function can be targeted to the parameter A. This in turn
requires that g(A) be targeted to A, f(A[1..h/2]) to A[1..h/2]
and f(A[h/2 + 1..h]) to A[h/2 + 1..h]. The first condition is
true since the size of array is one (i.e. a scalar) and the type
of the result is also a scalar. The last two conditions are con-
sistent with the targeting of the function f to its argument A.
One can then prove that the result of the function f is given
by some sequence of updates on its argument A. We now can
proceed to change the value parameter A into a reference
parameter after making sure it is safe to do so by checking
that no actual parameter that corresponds to A outside of f
is live after it is passed to f. This enables us to approach the
efficiency of imperative languages for the class of divide and
conquer problems.

We follow the following procedure for copy elimination:
First, we compute the targets of functions with the liveness
analysis being strictly intra-procedural. Fixpoint iteration
is needed in general but sometimes type information can be
used to guess fixpoints. Next, we convert call-by-value array
parameters to call-by-reference parameters if it is safe. This
requires inter-procedural analysis. Finally, each expression
in the program is decorated with two targets: synthetic and
inherited and this can be used to decide when it is necessary
to allocate new storage for array-creating expressions and
when they can share storage already allocated.

3 Syntax of Types and Expressions

The language we consider is typed lambda calculus with the
following special constructs for arrays:

• create (make) array: mka(lb, ub) creates an array whose
lower and upper integer bounds are given by lb, ub and
each element is undefined.

• update: upd(A,i,v), where A is an array, i is a legal
index into A and v is of the same type as A’s elements,
yields an array that is the same as the array A except
the ith element is v.

• subarray: sba(A,i,j), where A is an array and i and j are
legal indices into A, yields the subarray of A starting

at index i and ending at j. This will be abbreviated to
A[i..j]

• catenate: cat(A,B), where A and B are arrays, yields the
catenation of A and B. For purposes of optimization and
the semantics that will be shortly developed, it has the
following meaning: if A=a[l..m], B=a[n..p], m+1=n and
a (strictly, a[l..p]) is not live, then cat(A,B) is a[l..p];
otherwise, a newly created array which is the catena-
tion of A and B. (Liveness has to be taken into account
because A and B could be function calls that return up-
dated versions of an array a in-place when optimization
is done.)

We require that an array or a subarray have bounds of a
restricted form so that its type can be determined. Other-
wise, looping computations on the bounds are possible and a
subarray or an array may not be typable. The syntax is as
follows:

t = int | bool | t1 → t2 | array[I1..I2] of t

Most general form of I1 and I2 is c +
∑

i=1

(ai/bi)zi

where ai, bi, c are integer constants with bi > 0 and

zi are integer identifiers

e = c | x | λx : t.e | e1(e2) | if(e1, e2, e3) |

upd(A, i, v) | mka(lb, ub) | sba(A, i, j) | cat(A,B) |

letrec

f1 = λx : t1.e1

...

fn = λx : tn.en

in

e

4 Assumptions and Notation

• We assume that every occurrence of an identifier of array
type is made unique. The kth occurrence of xi in func-
tion f is denoted by xik. We adopt the convention that
if an identifier has two subscripts, then we are referring
to a particular occurrence of an identifier whereas if it
has none or one, we are referring to the identifier itself.
The main program e in the letrec is considered to be
the function f0.

• Let lbx..ubx be the subscript range of an array x; assume
that x[lbx..ubx] is always rewritten as x.

• When a lambda term is present as an argument to a
function, any free variable is changed to a bound vari-
able and the free variable passed as an extra argument
to the function. This is similar to lambda-lifting[13] to
reduce the number of reductions. We also assume the

following abbreviations: λx, y. e for λx.λy. e and f (x,y)
for app(app(f,x),y).

• Let the kth function call of fi and the functional param-
eter fpi in function fj be fijk and fpijk respectively. Let
actual(e, i) represent the ith actual parameter of the call
statement e (or equivalently, the ith argument of the
beta reduction e) and formal(fi, j) represent the jth
formal parameter of fi (or equivalently, the jth bound
variable of fi). Let FP be the set of all functional pa-
rameters.

• e[x1/x2] represents the substitution of all occurrences of
x2 in e by x1.

• To distinguish between bound variables in the standard
and target semantics, we use a dot over the bound vari-
able in the latter case.

5 Domains of Targets

Let D be the domain of values and let ⊥D be the correspond-
ing bottom value. The domain of targets is DT and T is the
semantic function that computes the target of an expression.
A first-order target is a set whose elements represent names
that could potentially share storage. DT has ⊥T (the empty
set) and >T as the bottom and top elements respectively with
>T being used as an “error” value. ℘ is the powerset symbol.
Let G be a set of unique names for anonymous arrays cre-
ated by mka, cat, upd, if, sba array operations and also
for arrays created by applications app so that there is a 1-1
correspondence between occurrences of these array creating
operations and the set G. These names are statically deter-
mined. When discussing an anonymous array expression p,
we refer to its unique name by gp. Let

Exp = domain of expressions as defined in Section 3

Id = domain of array identifiers

A = Id ∪G −the domain of array names

S = {a[l..m] | a ∈ A; l,m ∈ lba..uba} −A

−the domain of proper subarrays;

S and A are disjoint

G̃ = ℘(G ∪ subarrays of G)

−domain of all targets derived

from anonymous array expressions

Targets = ℘(A) ∪ ℘(S) ∪ >T

−the domain of all possible first-order targets

DT = Targets + DT → DT

−the domain of all possible targets

EnvT = A→ DT

−the domain of targeting environments

T : Exp→ EnvT → DT −the targeting function

The lattice structure over domain DT is induced by Targets.
The partial order is defined for target terms of identical type

as follows:

e1 v e2 if

{

e1 ⊆ e2 if e1, e2 ∈ Targets− G̃

e1 ∈ Targets− G̃ and e2 ∈ G̃

λẋ1.e1 v λẋ2.e2 = λẋ1.(e1 v e2[ẋ1/ẋ2]), ẋ1, ẋ2 : t

The lub operation is defined for target terms of identical type
as follows:

e1 t e2 = e1 ∪ e2 if e1, e2 ∈ Targets

λẋ1.e1 t λẋ2.e2 = λẋ1.(e1 t e2[ẋ1/ẋ2]), ẋ1, ẋ2 : t

We define two monotonic operators αif and αcat (used for
defining targets of if and cat expressions respectively) over
the domains DT and Targets respectively below. If the first
two operands are incompatible (i.e., the names represented
by these targets cannot share the same storage), the symbolic
target for the anonymous array for the if or cat expression
(passed as g) is returned.

αif (a, b, g)

= g if ∃aa ⊆ a and bb ⊆ b such that

aa ∈ G̃ and bb ∈ (Targets− G̃) and vice-versa

= g if ∃aa ∈ a and bb ∈ b such that aa = ẋi[l ..m],

bb = ẋi[n..p], (l 6= n or m 6= p), xi ∈ A

= g if ∃aa ∈ a and bb ∈ b such that aa = λẋi.e1

and bb = λẋi.e2 and αif (e1, e2, g) ∈ G

= a t b otherwise

The first line considers the incompatible case of a formal and
a newly created array on the arms of the if statement. There
is no a priori reason why they should have any storage re-
lationship, so we return the target of the anonymous array
corresponding to the if statement. The second line takes care
of 2 disjoint subarrays of an array. We also adopt the conven-
tion in this case and similar cases below that when xi ∈ G,
then ẋi = {xi}. The third line defines the incompatible cases
in the higher-order cases. The last line takes care of all the
other cases.

αcat(a, b, g)

= ẋi[l ..p] if a = ẋi[l ..m] and b = ẋi[n..p]

and n = m + 1.

= ⊥T if either a or b is ⊥T

= g if ∃aa ∈ a and bb ∈ b such that aa ∈ A

and bb ∈ S and vice-versa

= g if ∃aa ⊆ a and bb ⊆ b such that aa ∈ G̃

and bb ∈ (Targets− G̃) and vice-versa

= g if ∃aa ∈ a and bb ∈ b such that aa =

ẋi[l ..m], bb = ẋi[n..p] and n 6= m + 1, xi ∈ A

= g if ∃aa ∈ a and bb ∈ b such that aa =

ẋi[l ..m], bb = ẋj [n..p], i 6= j and xi, xj ∈ A

The first line considers the case when two arrays that are
adjacent can be catenated in-place. The second line is needed

for the fixpoint iteration to proceed properly. The third case
takes care of cases like cat(A, B[2..6]) that are incompatible
since some portions of B get overlaid if in-place catenation
is to take place. The next case is similar to the first case
in the αif . The next case considers the case of overlapping
subarrays of an array. The last case is similar to the third
case.

These monotonic operators assume that the arithmetic
conditions like n = m + 1 are decidable. This is not pos-
sible if arbitrary expressions are possible for l,m,n,p. Since
we are assuming simple linear expressions in the bound vari-
ables, it is possible to check the conditions by symbolic anal-
ysis. For example, if n is given by c +

∑

i=1 aizi and m by
d+

∑

i=1 bizi, then to check if n = m+1, we check if c−d = 1
and ai = bi. However, these conditions do not capture all the
cases when n = m+1, so the monotonic operators computed
by symbolic analysis give a weaker estimate than when in-
teger arithmetic is used. Let αif symb

and αcatsymb be the
monotonic operators when symbolic arithmetic is used. We
can show that αif v αif symb

and αcat v αcatsymb. Define
Tsymb : Exp → EnvT → DT as the version of T where
symbolic arithmetic is used for the monotonic operators.

6 Semantics of Target Expressions

Let xi represent a bound variable, fp a functional parame-
ter, sc a scalar and arith-bool arithmetic and boolean expres-
sions. The function notlive is defined in the next section and
Fpos(fp), the set of all the possible values for a functional
parameter fp, in the appendix. Let tenv ∈ EnvT . Note
that, though each occurrence of an if, upd, cat,etc. has its
own unique name, we refer to the name of the expression p
under discussion by the notation gp.

T [[c]]tenv = >T

T [[sc]]tenv = >T

T [[arith-bool]]tenv = >T

T [[fp]]tenv = if the final range of fp is an array then
⋃

s∈Fpos(fp)

T [[s]]tenv else >T

T [[xik]]tenv = ˙xik

T [[λxi : t.e]]tenv = λẋi. T [[e]]tenv[ẋi/xi]

T [[e1(e2)]]tenv = T [[e1]]tenv (T [[e2]]tenv)

T [[if(e1, e2, e3)]]tenv = αif (T [[e2]]tenv, T [[e3]]tenv, {gif})

T [[upd(A, i, v)]]tenv =

let

t = T [[A]]tenv

in

if ∀ṡ ⊆ t. notlive(ṡ, {gupd}) then t else {gupd}

T [[cat(A,B)]]tenv =

let

t = T [[A]]tenv

in

if ∀ṡ ⊆ t. notlive(ṡ, {gcat})

then αcat(t, T [[B]]tenv, {gcat}) else {gcat}

T [[mka(lb, ub)]]tenv = {gmka}

T [[sba(A, i, j)]]tenv =

let

t = T [[A]]tenv

in
⋃

ṡ⊆t

ṡ[i..j]

T [[{letrec f1 = λx1 : t1.e1, · · · , fn = λxn : tn.en in e}]]

tenv = T [[e]]tenvv where tenvv = least fixed point

(λtenv.tenv[· · · , fi ← λẋi.T [[ei]]tenv[ẋi/xi], · · ·])

Even though we have higher-order functions, we do not need
“target pairs” (like “alias pairs” or “strictness pairs”[2, 11, 9])
since the target of each of the constructs is the same whether
used as a value or function. Most of the above equations are
straightforward. The first three cases concern scalars and
these do not matter in copy elimination. Hence we return
the “error” value. For upd, cat, we first have to map A by
T to get the possible (first-order) targets and make sure that
identifiers corresponding to them are not live later in some
evaluation sequence. Since we are interested in copies due to
arrays, a functional parameter that has an array as the final
range will have to be applied at some stage to obtain an array
(otherwise, we can ignore it); so we find all the possible values
it can take and return the targets of these values. This is also
needed if we need to take care of upd’s of arrays that are
generated by applications to a functional parameter. If the
expense of computing all the possible values is not desirable,
then a simple heuristic is to return the union of all the formal
array parameters (in the target semantics) of the functionals
that have an array as range instead of returning the value in
the then-part in the semantics. This, however, reduces the
accuracy and copies may not be eliminated.

7 Computing Evaluation Sequences

The computation of targets requires knowledge of the eval-
uation sequence of an expression since updating in-place de-
pends on determining liveness of a bound variable which in
turn depends crucially on the evaluation order. An evalua-
tion sequence is an ordered set of occurrences of identifiers
in a function that is encountered during an evaluation. Since
each occurrence of an identifier made unique by the use of
double-subscripts, liveness information can be obtained from
an evaluation sequence. We also record array bounds of the
form [i..j] so that liveness of subarrays can also be computed.

Let ∅ stand for the empty range and <> stand for the
empty sequence. Let :: be append to a sequence and let
: append range information. Let ρ :: y : ∅ = ρ :: y and
ρ ::< xi >: [l..m] = ρ ::< xi[l..m] >. If σ is a set of se-
quences, then let σ :: y = {ρ :: y|ρ ∈ σ}. We use the no-
tation σ\x to mean eliminating x from all sequences in σ.

Let BVtoFbody be a function that maps each identifier to the
body of the function where it is bound. The function occr
computes all the possible set of sequences of a function given
some bound variable of the function. The parameter t lets
the occurrences of identifiers in the arguments of cat to be
skipped. This is an optimization based on the way αcat is
defined: if A and B are two overlapping subarrays targeted
to X (i.e. some subarray of X is live when an update in A up-
dates X), then αcat returns gcat. Hence occurrences in A and
B can be skipped when the target of cat is being computed
since the liveness is taken care of in αcat. To be able to do
this, occ records the beginning and end of the identifiers that
occur in the cat expression. If t is some {gcat}, define σ\\t
as the sequence with all the identifiers between gcat begin to
gcat end eliminated. Otherwise, it returns σ.

occr(xi, t) = occ(BV toFbody(xi),

{<>}, ∅)\\t

occ(c, σ, range) = σ

occ(fp, σ, range) = σ

occ(xik, σ, range) = σ ::< xik : range >

occ(e1(e2), σ, range) = occ(e2, occ(e1, σ, ∅), range)

occ(if(e1, e2, e3), σ, range) = occ(e2, occ(e1, σ, ∅), range) ∪

occ(e3, occ(e1, σ, ∅), range)

occ(upd(A, i, v), σ, range) = occ(A, occ(i, occ(v, σ, ∅), ∅), ∅)

occ(mka(lb, ub), σ, range) = occ(ub, occ(lb, σ, ∅), ∅)

occ(sba(A, i, j), σ, range) = occ(A, occ(i, occ(j, σ, ∅),

∅), [i..j])

occ(cat(A,B), σ, range) = occ(B, occ(A, σ :: gcat begin,

∅), ∅) :: gcat end

occ(λxi : t.e, σ, range) = σ :: (occ(e, {<>}, ∅) \xi)

We are assuming call-by-value evaluation above but by suit-
ably modifying occr, we can change the evaluation to call-
by-need and other evaluation mechanisms. The above ap-
proach is similar to path semantics of Bloss and Hudak[3].
The computation of these sequences requires one pass over
the functions. The predicate notlive checks if there is some
occurrence xik after a given occurrence xij in some evalua-
tion sequence. In the two sequences below, we omit range
information if it is a “don’t care”.

notlive(ṡ, t) = ∃xij .((ṡ = ẋij or ẋij [l..m]) and

¬∃xik. < · · ·xij · · ·xik · · · > ∈ occr(x, t)) or

(ṡ = ẋij [l..m] and ¬(∃xik[p..q]. < · · ·xij · · ·

xik[p..q] · · · > ∈ occr(x, t) and [l..m] ∩ [p..q] 6= ∅))

The first condition in the or considers only whole arrays
whereas the second condition considers subarrays.

8 Some Results

Theorem 1 For any finite program with bounded arrays, the
fixpoint tenvv is computable.

Theorem 2 Let e : t1 → t2 → · · · → tn → a, where a is of
array type, be rewritten as λy1 : t′1, · · · , yl : t′l.E where l ≤ n,
FreeV ariables(E) = {x1, · · · , xm} and E is of array type.
If T [[e]]tenv = λẏ1, · · · , ẏl. ẋi where xi is of array type and
i ≤ m, then e can be targeted to xi and xi updated in-place
in e to give the value of e.

Proof: The proof is by a combination of complete computa-
tional induction[16] on the number of arrows and structural
induction on E. The proof is given in the appendix.

Corollary 1 If T applied to the body of the function fp is
ẋ where x is an array bound variable, then the value of the
function is given by some sequence of updates on x. Hence x
can be converted from a call-by-value parameter to a call-by-
reference parameter if all the actuals corresponding to x, in
functions other than fp, are not live after transmission.

Let fc be the set of all possible function calls computed while
collecting possible values for functional parameters (See Ap-
pendix). If ẋ is the target of fp and x is formal(fp, l), then
x can be converted from a call-by-value parameter to a call-
by-reference parameter if

∀fijk,¬(i=j=p) ∈ fc.

∀ṡ ⊆ T [[actual(fijk, l)]]tenv. notlive(ṡ, ∅)

Theorem 3 ∀e, tenv. T [[e]]tenv v Tsymb[[e]]tenv

9 Examples

9.1 Hudak’s Quicksort

We omit type declarations; v and vector are of array type,
others are of type integer. See Hudak[7]. This is a first-order
case.

result () = Quicksort (vector)

Quicksort (v) = qsort (v, 1, n)

qsort (v, left, right) =
if left >= right then v
else scanright (v, left, right, v[left], left, right)

scanright (v, l, r, pivot, left, right) =
if l = r then finish (upd(v, l, pivot), l, left, right)
else if v[r] >= pivot then

scanright (v, l, r−1, pivot, left, right)
else

scanleft (upd(v, l, v[r]), l+1, r, pivot, left, right)

scanleft (v, l, r, pivot, left, right) =
if l = r then finish (upd(v, l, pivot), l, left, right)
else if v[l] <= pivot then

scanleft (v, l+1, r, pivot, left, right)
else

scanright (upd(v, r, v[l]), l, r−1, pivot, left, right)

finish (v, mid, left, right) =
qsort (qsort (v, left, mid−1), mid+1, right)

Fixpoint Iteration The target of each function is com-
puted by iteration (from left to right) in Figure 1. From
Theorem 2 and its corollary, we can conclude that quicksort
can be implemented in-place.

9.2 Bitonic Sort

(* n is a power of 2; X is a parametric array[1..n] *) This is
also a first-order case.

sb(X) = if n=1 then X else dc (trans (X,1))

rev (X,i) =
if i > n/2 then X
else rev (upd(upd(X,i,X[n−i+1]),n−i+1,X[i]), i+1)

trans (X,i) =
if i > n/2 then X
else if X[i] ≤ X[i+n/2] then trans (X, i+1)
else trans (upd(upd(X,i,X[i+n/2]),i+n/2,X[i]), i+1)

dc (X) = cat(sb(X[1..n/2]),sb(X[n/2+1..n]))

merge (X,Y) = sb(cat(X,rev (Y)))

sort (X) =
if n=1 then X
else merge (sort (X[1..n/2]), sort (X[n/2+1..n]))

The fixpoint iteration is given in Figure 2. The target of
merge does not converge to a simple value because the na-
ture of arguments X and Y, which are always adjacent, are
not taken into account. However, sort and other functions
converge to simple targets because this information is taken
into account. By undertaking a collecting analysis of the ar-
guments of merge, the adjacency of the two arguments can be
discovered and we can conclude that merge also has a simple
target.

We get simple targets for sort and sb only if we assume the
evaluation order for upd to be from right to left (this can be
seen in the definition of occ). If this is not the case, temporary
introduction[6] is needed to eliminate interfering live-ranges.

9.3 Higher-order Example

g(a,b)=a
h(a,b)=b

f(a,b,g1,g2)=
if cond1 then

if cond2 then cat(upd(g1(a,b),i1,v1), upd(b,i2,v2))
else cat(g1(a,b),upd(g2(a,b),i3,v3))

else f(upd(a,i4,v4),upd(b,i5,v5),g1,g2)

f(A[1..n/2],A[n/2+1..n],g,h)

The fixpoint of the function f can be computed to be Ȧ. If
the simple heuristic mentioned in Section 6 is used instead of
computing all the possible values of the functional parame-
ters, the first update cannot be done in-place and we do not
get the target of f to be Ȧ.

The liveness analysis that is inherent in the definitions of
occ and notlive is able to handle the above case satisfactorily;
however more detailed liveness analysis has to be undertaken
when f is defined instead as follows:

f(a,b,g1,g2)=
cat(upd(g1(a,b),i1,v1), upd(g2(a,b),i2,v2))

To handle this, occ has to know about the targets of the
second update. Since our current definition of occ does not
use the T function, it is unable to conclude that the fixpoint
of this f is also Ȧ.

10 Complexity of Computing

Targets

The problem of strictness analysis in the first-order case
has been shown by Hudak and Young[9] to be deterministic
exponential time in the number of arguments to the func-
tion being analyzed. Based on this, Neirynck[11] concludes
that the analysis for computing alias and support sets for
higher-order imperative languages to be exponential in time.
Since computing targets involves a set of equations similar to
Neirynck’s, it is at least exponential. This is due to use of
extensional equality for functional terms in the fixpoint iter-
ation. Further, collecting all the possible values for a func-
tional parameter has been shown by Weihl[5] to be P-space
hard.

However, we believe that the average behaviour is much
better. Neirynck[11] shows that for the first-order case, type
information can be used to guess the correct fixpoint. How-
ever, heuristics have to be used and accuracy may be lost in
the higher-order case.

In our analysis, the important question is whether the fix-
point is a simple target; otherwise sharing is not possible.
The type of the arguments and the type of the result of a
function can often be used to guess the fixpoint, which can
then be verified. This is the approach followed in our im-
plementation of the compiler for the first-order case in the
language SAL. The complexity in this case is linear in the
size of the program if we assume linear induction variables.
As an example of the effectiveness of this approach, we found
that for the program puzzle(see Section 12), the frontend con-
sumed approximately 4 secs on a Sun-3 to generate the in-
termediate graph representation of the program whereas the
analysis in the backend took about the same time. The back-
end includes, in addition to target analysis, loop invariant
motion, common subexpression elimination among loop in-
variants, computing operands of expressions, introduction of

Quicksort λv̇.⊥T λv̇.⊥T λv̇.v̇ λv̇.v̇ λv̇.v̇
qsort λv̇, · · · .⊥T λv̇, · · · .v̇ λv̇, · · · .v̇ λv̇, · · · .v̇ λv̇, · · · .v̇

scanright λv̇, · · · .⊥T λv̇, · · · .⊥T λv̇, · · · .⊥T λv̇, · · · .v̇ λv̇, · · · .v̇
scanleft λv̇, · · · .⊥T λv̇, · · · .⊥T λv̇, · · · .⊥T λv̇, · · · .v̇ λv̇, · · · .v̇

finish λv̇, · · · .⊥T λv̇, · · · .⊥T λv̇, · · · .v̇ λv̇, · · · .v̇ λv̇, · · · .v̇

Figure 1: Fixpoint Iteration in Quicksort

sb λẊ.⊥T λẊ.Ẋ λẊ.Ẋ λẊ.Ẋ

rev λẊ, i.⊥T λẊ, i.Ẋ λẊ, i.Ẋ λẊ, i.Ẋ

trans λẊ, i.⊥T λẊ, i.Ẋ λẊ, i.Ẋ λẊ, i.Ẋ

dc λẊ.⊥T λẊ.⊥T λẊ.Ẋ λẊ.Ẋ

merge λẊ, Ẏ .⊥T λẊ, Ẏ .⊥T λẊ, Ẏ .αcat(Ẋ, Ẏ , {gcat}) λẊ, Ẏ .αcat(Ẋ, Ẏ , {gcat})

sort λẊ.⊥T λẊ.Ẋ λẊ.Ẋ λẊ.Ẋ

Figure 2: Fixpoint Iteration in Bitonic sort

temporaries to break dependencies (so that nested updates
in-place are possible), some dependency analysis, etc. [6].

11 Equivalence of Standard and Op-

timized Interpreters

Using the target information, we can define two interpreters,
with and without optimization. We can show that they com-
pute the same values (extensional equality) though their use
of store and the time taken for execution can be very dif-
ferent. We first define the standard interpreter without any
optimization: call this Estd. The domains are as follows:

Loc = Integer× Integer

−the domain of locations

Env = A→ D − the domain of environments

F = D→ Env→ St→ (D×Env × St)

−the domain of functions

D = Bool + Nat + F + Loc

−the domain of values

St = Loc→ D + unused − the domain of stores

Estd : Exp→ Env→ St→ D×Env × St

−the unoptimized semantic function

for expressions

Eopt : Exp→ Env→ St→ D×Env × St

−the optimized semantic function

for expressions

K : Con→ D

−the semantic function for constants

Allocate : St→ Type→ Loc× St − returns a

location of size given by a type

Eval : St× Loc→ D − reads the value

pointed by a location

Let Estd,v, Estd,e and Estd,s stand for the value, environment
and store components respectively. K gives meaning to con-
stants. The standard interpreter does not need the store
parameter but it is useful in showing the equivalence of the
two interpreters.

A location loc has two components < l, len > with l the
starting address of the location and len the length of the
structure. We assume a function Allocate, which given a store
and a type returns a store and a location of the newly allo-
cated space of size determined by the type. A function Deal-
locate can be similarly defined but to keep the interpreters
simple, we ignore details about deallocation. We use a two-
level store for structures and a one-level store for other values.
To access a structure, we first have to dereference once to get
its location and then use it to locate the value. Hence the D

domain contains Loc. Thus to access the value of a structure
x, we need to say st(env(x)) whereas to access other values y,
we need to say env(y). Let Eval be a function which given
a store and a location returns the value at the location. Let
env[x 7→ loc] represent a new environment that is different
from env in that x is mapped to location loc. The standard
optimizer is as follows:

Estd[[c]]env st = < K(c), env, st >

Estd[[fp]]env st = < env(fp), env, st >

Estd[[sc]]env st = < env(sc), env, st >

Estd[[xi]]env st = < st(env(x)), env, st >

Estd[[λx : t.e]]env st =

< λloc. Estd,v[[e]]env[x 7→ loc] st, env, st >

Estd[[e1(e2)]]env st =

let

< f, env1, st1 > = Estd[[e1]]env st

< a, env2, st2 > = Estd[[e2]]env1 st

if type(gapp) is of array type then

< loc, st3 > = Allocate(st2, type(gapp))

< l, env3, st4 > = (f a env2 st3)

gapp
copy
= l

env4 = env3[gapp 7→ loc]

else < gapp, env4, st4 > = (f a env2 st2)

in

< gapp, env4, st4 >

Estd[[if(e1, e2, e3)]]env st =

let

< bool, env1, st1 > = Estd[[e1]]env st

in

if bool then Estd[[e2]]env1 st1

else Estd[[e3]]env1 st1

Estd[[upd(A, i, v)]]env st =

let

< ind, env1, st1 > = Estd[[i]]env st

< val, env2, st2 > = Estd[[v]]env1 st1

< loc, st3 > = Allocate(st2, type(gupd))

< l, env3, st4 > = Estd,v[[A]]env2 st3

gupd
copy
= l

update gupd destructively in the

ind position by val

env4 = env3[gupd 7→ loc]

in

< gupd, env4, st4 >

Estd[[cat(A,B)]]env st =

let

< v1, env1, st1 > = Estd[[A]]env st

< v2, env2, st2 > = Estd[[B]]env1 st1

< loc, st3 > = Allocate(st2, type(gcat))

gcat
copy
= v1||v2(catenate)

env3 = env2[gcat 7→ loc]

in

< gcat, env3, st3 >

Estd[[mka(lb, ub)]]env st =

let

< m, env1, st1 > = Estd[[lb]]env st

< n, env2, st2 > = Estd[[ub]]env1 st1

< loc, st3 > = Allocate(st2, type(gmka))

env3 = env2[gmka 7→ loc]

in

< gmka, env3, st3 >

Estd[[sba(A, i, j)]]env st =

let

< v, env1, st1 > = Estd[[A]]env st

< m, env2, st2 > = Estd[[i]]env1 st1

< n, env3, st3 > = Estd[[j]]env2 st2

< loc, st4 > = Allocate(st3, type(gsba))

gsba
copy
= v[m..n]

env4 = env3[gsba 7→ loc]

in

< gsba, env4, st4 >

Estd[[{letrec f1 = λx : t1.e1, · · · ,

fn = λx : tn.en in e}]]env st = Estd[[e]]envv st

where envv = least fixed point

(λenv.env[· · · , fi ← Estd[[λx : ti.ei]]env st, · · ·])

Next we define an optimized interpreter, Eopt, by the follow-
ing steps:

• For each function fi returning an array type, we operate
Tsymb on the function body. If the resulting value is ẋ
where x is an aggregate bound variable, then no storage
is allocated to the result of the function since it can share
storage with x.

• We decorate the program with two targets at each node
of array type: the synthetic and inherited — the syn-
thetic target is computed from the node whereas the in-
herited one is the target that is passed from the parent
node.

• If the synthetic and inherited targets of an expression of
array type coincide then the expression is properly tar-
geted and the expression can be evaluated in the storage
corresponding to the target. If targets do not coincide,
then the expression is evaluated in the storage corre-
sponding to the synthetic target and then copied into
the storage corresponding to the inherited target.

• A final step in the optimization is the conversion of a
call-by-value parameter into call-by-reference by check-
ing that all the actuals corresponding to the formal, oc-
curring outside of fi, are not live. However, we will not
consider this additional complication in Eopt.

Both interpreters are the same on computations not involving
arrays. In the description below we will use the notation
(Ti, Ts).exp to represent the decoration of a node with the
two targets. We often use the simpler notation Ti.exp where
Ti is the inherited target (since Ts can always be calculated
from the expression). We omit it completely in some cases
where it is not necessary, for example, where scalar values
are being computed. The notation (−, T) means that only
the synthetic target is available.

As an example, we present a decorated program for the
simple divide and conquer schema considered earlier:

function f(A : arr(h)) : arr(h) =

(Ȧ, Ȧ).if h = 1 then Ȧ.g(A)

(Ȧ, Ȧ).else (Ȧ, Ȧ).cat(f(sba(A, 1, h′)),

f(sba(A, h′ + 1, h)))

Let Elem be a function that maps a bound variable in the
target semantics to its corresponding bound variable in the
standard semantics. The optimized interpreter is as follows:

Eopt[[c]]env st = < K(c), env, st >

Eopt[[fp]]env st = < env(fp), env, st >

Eopt[[sc]]env st = < env(sc), env, st >

Eopt[[(T, ẋi).xi]]env st =

let

if T = ẋi then noop

else Elem(T)
copy
= x

in

< Elem(T), env, st >

Eopt[[λx : t.e]]env st =

< λloc. Eopt,v[[(Ts, Ts).e]]env[x 7→ loc] st, env, st >

Eopt[[(Ti, Ts).e1(e2)]]env st =

let

< f, env1, st1 > = Eopt[[(−, T1).e1]]env st

< a, env2, st2 > = Eopt[[(−, T2).e2]]env1 st1

if type(gapp) is of array type then

if Ti = Ts and Ti 6= {gapp} then

Assign loc = env(Elem(Ti))

as the location for the result of f.

< v, env3, st4 > = (f a env2 st2)

env4 = env3[gapp 7→ loc, Elem(Ti) 7→ ⊥D]

else

< loc, st3 > = Allocate(st2, type(gapp))

< l, env3, st4 > = (f a env2 st3)

gapp
copy
= l

env4 = env3[gapp 7→ loc]

else < gapp, env4, st4 > = (f a env2 st2)

in

< gapp, env4, st4 >

Eopt[[T.if(e1, e2, e3)]]env st =

let

< bool, env1, st1 > = Eopt[[e1]]env st

in

if bool then Eopt[[T.e2]]env1 st1

else Eopt[[T.e3]]env1 st1

Eopt[[Ti.upd((−, Ts).A, i, v)]]env st =

let

< ind, env1, st1 > = Eopt[[i]]env st

< val, env2, st2 > = Eopt[[v]]env1 st1

if Ti = Ts then

< v, env3, st4 > = Eopt[[Ts.A]]env2 st3

loc = env3(v)

env4 = env3[gupd 7→ loc, Elem(Ts) 7→ ⊥D]

else

< loc, st3 > = Allocate(st2, type(gupd))

< l, env3, st4 > = Eopt[[A]]env2 st3

gupd
copy
= l

env4 = env3[gupd 7→ loc]

update gupd destructively in the

ind position by val

in

< gupd, env4, st4 >

Eopt[[(Ti, Ts).cat(A,B)]]env st =

let

Let l ,m be the bounds of the array A

and p, q that of B .

if Ti = Ts and Ts 6= {gcat} then

< v1, env1, st1 > = Eopt[[Ti[l..m].A]]env st

< v2, env2, st2 > =

Eopt[[Ti[m + 1..q].B]]env1 st1

st3 = st2; loc = < (env(v1))1, q − l + 1 >

else

< v1, env1, st1 > = Eopt[[A]]env st

< v2, env2, st2 > = Eopt[[B]]env1 st1

< loc, st3 > = Allocate(st2, type(gcat))

gcat
copy
= v1||v2

env3 = env2[gcat 7→ loc]

in

< gcat, env3, st3 >

Eopt[[mka(lb, ub)]]env st =

let

< m, env1, st1 > = Eopt[[lb]]env st

< n, env2, st2 > = Eopt[[ub]]env1 st1

< loc, st3 > = Allocate(st2, type(gmka))

env3 = env2[gmka 7→ loc]

in

< gmka, env3, st3 >

Eopt[[(Ti,−).sba((−, Ts).A, i, j)]]env st =

let

< v, env1, st1 > = Eopt[[(−, Ts).A]]env st

< m, env2, st2 > = Eopt[[i]]env1 st1

< n, env3, st3 > = Eopt[[j]]env2 st2

if Ti = ẋ[m..n] and Ts = ẋ then

st4 = st3

loc = < (env(v))1 + m− l, n−m + 1 >

where l is the lower range of the array gsba

else

< loc, st4 > = Allocate(st3, type(gsba))

gsba
copy
= v[m..n]

env4 = env3[gsba 7→ loc]

in

< gsba, env4, st4 >

Eopt[[{letrec f1 = λx : t1.e1, · · · , fn = λx : tn.en

in e}]]env st = Eopt[[(−, Ts).e]]envv st

where envv = least fixed point

(λenv.env[· · · , fi ← Eopt[[λx : ti.ei]]env st, · · ·])

When a structure is updated destructively to represent a new
name, the value of the previous name mapped to this struc-
ture is set to ⊥D as a tag. This can be seen in the upd

case where env4 is set to a new value. In the unoptimized
interpreter, new structures are created for names that could
potentially share storage in the optimized version; hence, the
optimized version has a fewer number of names defined at
any time than the unoptimized version.

Definition 1 Two pairs of environments and stores <
envstd, ststd >, < envopt, stopt > correspond (≈) if

• ∀x.envopt(x) v envstd(x)

• If envopt(x) <> ⊥D then Eval(envstd(x), ststd) =
Eval(envopt(x), stopt)

Theorem 4

∀terminating expressions e of array type,

two environments and stores that correspond

< envstd, ststd >≈< envopt, stopt > .

Eopt,v[[(Ti, Ts).e]]envopt stopt = Estd,v[[e]]envstd ststd

Eopt,es[[(Ti, Ts).e]]envopt stopt ≈ Estd,es[[e]]envstd ststd

12 Experimental Results

A compiler for a substantial part of SAL has been imple-
mented to verify the effectiveness of the approach. SAL is a
single assignment language defined at Stanford[14] and pro-
vides iteration, parametric types and streams with scoping
mechanisms similar to Algol languages but does not have
higher-order functions. It has many features that are found
in comparable languages like VAL and SISAL.

The timings for the following programs on a MicroVax-II
(without counting the output times except when negligible)
were collected using the UNIX time command (Figure 3)

• Quicksort: sorts an array of 1000 elements.

• Bitonic sort: sorts an array of 1024 elements (has to
be a power of 2)

• Bubblesort: sorts an array of 1000 elements (same as
quicksort).

• Life program: 500 iterations on a board 10 by 10 (with
border 12 by 12)

• Matrix multiply: of two 100 by 100 integer matrices

• 8 queens: Finds all the 92 solutions.

• NEWRZ: a time-critical routine from SIMPLE that is
used for hydrodynamic calculations. It is a translitera-
tion of the NEWRZ program considered by Ellis[4]

• CYK: the Cocke-Younger-Kasami algorithm parses an
input string of 128 a’s for the following ambiguous gram-
mar: A→a A→AA

• Puzzle: finds the solution to a three-dimensional puzzle.
This is a highly recursive and computationally demand-
ing program that is often used for benchmarking C and
other languages on workstations.

• Perm: enumerates permutations of an array of 7 ele-
ments. This is iterated 5 times.

The various optimization levels are: NoOpt (No optimization
was done); Opt1 (All optimizations with no rangecheck elim-
ination); Opt2 (All optimizations with rangecheck elimina-
tion by analysis); Opt3 (All optimizations with rangechecking
turned off) whereas pc is execution time for Berkeley Pascal
with rangechecking turned off. NoOpt/Opt1 measures the im-
provement due to high-level optimizations and Opt3/pc com-
pares SAL and pc timings. There is substantial possibility for
improvement in the execution times by use of peephole op-
timization, register allocation and other standard optimiza-
tions. We believe that the timings could be improved by as
much as 50% with an UCODE (the intermediate code gen-
erated) to UCODE optimizer incorporating these standard
optimizations.

It is quite encouraging that we report execution times for
five out of ten programs better than or the same as the tim-
ings for pc. The timings for life and cyk suffer because of the
inability to redefine arrays partially in a straightforwardly
efficient way in SAL. There are no “copies” that can be elim-
inated in 8 queens (a backtracking algorithm) and life. The
matrix multiply program suffers because the copy elimination
comes at the cost of removing a loop invariant that is present
in the source in a tight loop. However, an UCODE-UCODE
optimizer would have reintroduced this loop invariant. All
copies in other programs are eliminated by the compiler. The
compiler converts the O(n3) bubblesort algorithm (due to
copies) back to O(n2). Similar improvements are seen in
puzzle and newrz. However, quicksort and bitonic sort do not
show such improvement since the copies that are generated
become smaller as the recursion unfolds.

NoOpt Opt1 Opt2 Opt3 pc NoOpt/Opt1 Opt3/pc
quick 12.5 2.8 2.8 1.5 1.8 4.93 .83
bitonic 14.3 2.9 2.9 2.5 2.0 4.46 1.25
bubble 1913.2 26.6 17.5 17.5 22.4 71.90 .78
life 23.4 22.6 18.4 18.4 8.6 1.04 2.14
mm 72.6 82.2 48.2 48.2 39.2 0.88 1.23
8queens 1.3 1.3 1.2 1.0 1.2 1.00 .83
newrz 19.9 1.6 1.6 1.2 1.3 12.44 .92
cyk 58.0 56.9 41.9 39.0 18.8 1.02 2.07
puzz 393.6 32.6 30.7 24.0 19.5 12.07 1.27
perm 5.5 3.5 3.5 2.5 2.5 1.57 1.00

Figure 3: Execution times of benchmarks in SAL and Berkeley Pascal.

13 Conclusions

We have discussed a way for removing copies even in the
presence of subarrays that are dynamically created and com-
posed. Since this happens very naturally in divide and con-
quer problems, much of the analysis can be avoided if this
idiom can be incorporated in the language by a special con-
struct. This actually has been proposed by some recent work
at Yale University[15]. It remains to be seen whether any
other such constructs are needed to avoid expensive analysis
for copy elimination.

14 Acknowledgements

We would like to thank Paul Hudak, Adrienne Bloss, Daniel
Weise and Carolyn Talcott for their many suggestions for
improving the earlier versions of this paper. Our thanks are
also due to P. Panangaden and Anne Neirynck. We also
thank Steve Tjiang, N. Shankar, Thomas Pressburger, Steve
Richardson, M. Ganapathi and Jeffrey Barth for their helpful
comments on the later versions of the paper. This work was
supported in part by NSF grant CCR 8351269; this support
is gratefully acknowledged.

Appendix: Collecting possible values for func-

tional parameters

• Let FC be the set of all function calls in the program
except those calls on functional parameters.

• Let fv be the set of functions visited, and fc the set of
possible function calls.

• Let C(x, fv, fc) be the set of actual parameters of the
formal parameter x when fv function nodes have already
been visited and fc is the set of all function calls that
has been computed so far.

ALL(fc) computes the set of all possible values for each func-
tional parameter and the computation is started by the call
ALL(FC).

If formal(fi, l) is x, then

C(x, fv, fc) =

⋃































∀fijk ∈ fc.
if actual(fijk, l) = formal(fj ,m) then

if fj ∈ fv then ∅
else C(formal(fj ,m), {fj} ∪ fv, fc)

else {actual(fijk, l)}
∀fpijk ∈ fc. Fpos(FPi)

Let Fpos(FPi) = ∅, i = 1..|FP|

ALL(fc) =

iterate till no change in fc






Fpos(FPi) ∪ = C(FP i, ∅, fc), i = 1..|FP|

fc ∪ =
⋃i=|FP|

i=1 Fpos(FPi)
{fijk} ∪ = Fpos(FPi) if FPi is called in fj .

Appendix: Proof of Theorem 2

The proof is by a combination of complete computational
induction[16] on the number of arrows and structural induc-
tion on E. To prove the base case n = 0, we use structural
induction on E as follows:

xi: The result is immediate.
e1(e2): The target is ẋi only if the target of e1 maps the

target of the argument e2 into ẋi. There are two possibilities:
either T [[e1]]tenv =λq̇.q̇ and T [[e2]]tenv = ẋi or T [[e1]]tenv
=λq̇.ẋi and T [[e2]]tenv = ṗ. In the first case, by induction
hypothesis, e2 is given by updates on xi and hence e1(e2)
will also be given by updates on xi. In the second case,
e1 = λq.(expression in xi, · · ·). The expression is therefore
given by updates on xi by induction hypothesis, hence e1(e2)
is also given by updates on xi.

if(cond,conseq,alt): The target is ẋi only if both arms of
the conditional map to the same target. From the structural
induction hypothesis, it follows that the result is given by
the update of the parameter xi if cond is true and also by xi

when cond is false. Hence the result is given by update of xi.
cat(A[l..m],B[n..p]): The target is ẋi only if both A and B

are mapped to ẋi and n=m+1 with l and p as the lower and
upper bounds of xi. Hence the result of E is given by update
of xi if cat function is in-place for this condition.

upd(A,ii,v): The target is ẋi only if A is mapped to xi. If
A is not live then xi can be updated to give the result of fi.

sba(A,ii,jj): This case gives rise to ẋi only if i and j are
the lower and upper bounds of xi and A’s target is ẋi. Under
these conditions, from the inductive hypothesis, if A is given
by an update of xi, then the same update of xi can give rise
to the value of sba expression.

λxk : t.e, c, p, arith-bool, mka: These cases cannot give
rise to ẋi as a target, hence vacuously true.

This completes the proof of the base case.

Assume that the theorem is true for n. To prove
for n + 1, we proceed as follows: Let e have n ar-
rows in its type. Then e′ = λy0 : t′0.e has n + 1 ar-
rows in its type. Now T [[e′]]tenv = λẏ0.T [[e]]tenv =
λẏ0.λẏ1, · · · , ẏl. ẋi = λẏ0, · · · , ẏl. ẋi. Since e can be given
by updates on xi, it follows that e′ can also be given by up-
dates on xi.

This completes the theorem’s proof. 2

References

[1] A.V. Aho and J.D. Ullman. Principles of Compiler De-
sign. Addison-Wesley Publishing Company, 1977.

[2] A.Neirynck, P.Panangaden, and A.J.Demers. Computa-
tion of aliases and support sets. In ACM Symposium on
Principles of Programming Languages, ACM, Jan 1987.

[3] Adrienne Bloss and Paul Hudak. Path semantics. In
Proceedings of the Third Workshop on the Mathemat-
ical Foundations of Programming Language Semantics,
Springer-Verlag, 1988.

[4] J.R. Ellis. A Compiler for VLIW Architectures. PhD
thesis, Yale University, December 1984.

[5] William E.Weihl. Interprocedural analysis in the pres-
ence of pointers, procedure variables, and label variables.
In ACM Symposium on Principles of Programming Lan-
guages, ACM, Jan 1980.

[6] K. Gopinath. Copy Elimination in Single Assignment
Languages. PhD thesis, Stanford University, Mar 1988.

[7] Paul Hudak. A semantic model of reference counting
and its abstraction. In ACM Symposium on Lisp and
Functional Programming, ACM, Aug 1986.

[8] Paul Hudak and Adrienne Bloss. The aggregate update
problem in functional programming systems. In ACM
Symposium on Principles of Programming Languages,
ACM, Jan 1985.

[9] Paul Hudak and Jonathan Young. High-order strictness
analysis in untyped lambda calculus. In ACM Sympo-
sium on Principles of Programming Languages, ACM,
Jan 1986.

[10] Alan Mycroft. Abstract interpretation and Optimising
transformations for applicative programs. PhD thesis,
Edinburgh University, 1981.

[11] Anne Neirynck. Static Analysis of Aliases and Side Ef-
fects in Higher-Order languages. PhD thesis, Cornell
University, February 1988.

[12] P.Cousot and R.Cousot. Abstract interpretation. In
ACM Symposium on Principles of Programming Lan-
guages, ACM, Jan 1977.

[13] R.J.M.Hughes. Graph Reduction with
Super-combinators. Technical Report, Oxford Univer-
sity PRG Technical Monograph PRG-28, 1982.

[14] J.R.Celoni S.J. and J.L.Hennessy. SAL: A Single-
Assignment Language for Parallel Algorithms. Technical
Report, Computer Systems Laboratory, Stanford Uni-
versity, July 1981.

[15] Z.G.Mou and P.Hudak. An algebraic model for divide-
and-conquer and its parallelism. Journal of Supercom-
puting, 2(3), 1988.

[16] Z.Manna. Mathematical theory of computation.
McGraw-Hill, 1974.

