Reductions and Rice’s theorems

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

25 November 2013
Outline

1. Reductions
2. Rice’s theorems
Let $L \subseteq A^*$ and $M \subseteq B^*$ be two languages. We say L reduces to M and write $L \leq M$ iff there exists a computable map $\sigma : A^* \rightarrow B^*$ such that

$$w \in L \iff \sigma(w) \in M.$$
Reductions and recursive/re-ness

Theorem

If $L \leq M$ then:

1. If M is r.e. then so is L.
2. If M is recursive then so is L.

Or to put it differently:

Theorem

If $L \leq M$ then:

1. If L is not r.e. then neither is M.
2. If L is not recursive then neither is M.
Examples of reductions

Let L be the language $\{M \mid M \text{ accepts } \epsilon\}$. Then

$$\text{HP} \leq L.$$

Describe a computable map σ which witnesses the reduction. Hence, since HP is undecidable (i.e. not recursive) so is L.

Examples of reductions

Let L be the language $\{M \mid M$ accepts a regular language$\}$. Then

$$\neg \text{HP} \leq L.$$

- Describe a computable map σ which witnesses the reduction.
- Hence, since $\neg \text{HP}$ is undecidable (i.e. not recursive) so is L.
- In fact, since $\neg \text{HP}$ is not r.e., we can say that L is not r.e.
Rice’s theorem

Theorem (Rice)

Any non-trivial property of r.e. languages is undecidable.
Rice’s theorem

Theorem (Rice)

Any non-trivial property of r.e. languages is undecidable.

Theorem (Rice)

Any non-monotone property of r.e. languages is not even recursively enumerable.
A property P of languages over an alphabet A is a subset of languages over A.
A property P is a non-trivial property of r.e. languages, if there is at least one r.e. language L satisfying P, and another L' not satisfying P.

E.g. "is empty" is non-trivial. "is not accepted by a TM" is trivial.

A property P of languages is monotone (w.r.t r.e. languages) if for all r.e. sets A and B, whenever $A \subseteq B$ and $P(A)$, we have $P(B)$. In other words, P is monotone if whenever a set has the property, then all supersets of that set have it as well. "is infinite" is monotone, "$L(M)$ is finite" is not monotone.
A property P is a **non-trivial** property of r.e. languages, if there is at least one r.e. language L satisfying P, and another L' not satisfying P.

- E.g. “is empty” is non-trivial
A property P is a non-trivial property of r.e. languages, if there is at least one r.e. language L satisfying P, and another L' not satisfying P.
- E.g. “is empty” is non-trivial
- “is not accepted by a TM” is trivial.

A property P of languages is monotone (w.r.t r.e. languages) if for all r.e. sets A and B, whenever $A \subseteq B$ and $P(A)$, we have $P(B)$.

In other words, P is monotone if whenever a set has the property, then all supersets of that set have it as well.
A property P is a **non-trivial** property of r.e. languages, if there is at least one r.e. language L satisfying P, and another L' not satisfying P.
- E.g. “is empty” is non-trivial
- “is not accepted by a TM” is trivial.

A property P of languages is **monotone** (w.r.t r.e. languages) if for all r.e. sets A and B, whenever $A \subseteq B$ and $P(A)$, we have $P(B)$.

In other words, P is monotone if whenever a set has the property, then all supersets of that set have it as well.
- “is infinite” is monotone,
A property P is a **non-trivial** property of r.e. languages, if there is at least one r.e. language L satisfying P, and another L' not satisfying P.

- E.g. “is empty” is non-trivial
- “is not accepted by a TM” is trivial.

A property P of languages is **monotone** (w.r.t r.e. languages) if for all r.e. sets A and B, whenever $A \subseteq B$ and $P(A)$, we have $P(B)$.

In other words, P is monotone if whenever a set has the property, then all superset of that set have it as well.

- “is infinite” is monotone,
- “$L(M)$ is finite” is not monotone.
For a property P, we define

$$L_P = \{ M \mid L(M) \text{ satisfies } P \}.$$
Proof of Rice’s Theorem 1

- Let P be a non-trivial property of r.e. languages. Then there are TM’s K and T such that $L(K)$ satisfies P and $L(T)$ does not satisfy P.

- We show that $L_P = \{ M \mid L(M) \text{ satisfies } P \}$ is not recursive.

- Case 1: If \emptyset does not satisfy P. We reduce HP to L_P.

- Given $M\#x$, construct a machine $M' = \sigma(M\#x)$ that on input y
 - saves y on a separate track
 - writes x on its tape
 - runs as M on input x
 - if M halts on x, M' runs as K on y and accepts iff K accepts.

$$L(M') = \begin{cases} L(K) & \text{if } M \text{ halts on } x \\ \emptyset & \text{if } M \text{ does not halt on } x. \end{cases}$$
Proof of Rice’s Theorem 1

- **Case 2:** If \emptyset satisfies P. We reduce $\neg HP$ to L_P.
- Given $M\#x$, construct a machine $M' = \sigma(M\#x)$ that on input y
 - saves y on a separate track
 - writes x on its tape
 - runs as M on input x
 - if M halts on x, M' runs as T on y and accepts iff T accepts.

$$L(M') = \begin{cases}
\emptyset & \text{if } M \text{ does not halt on } x \\
L(T) & \text{if } M \text{ halts on } x.
\end{cases}$$
Proof of Rice’s Theorem 2

Let P be a non-monotone property of r.e. sets.

Then there are TM’s K and T such that $L(K) \subseteq L(T)$ and $L(K)$ satisfies P but $L(T)$ does not.

We show $\neg HP \leq L_P$.

Given $M\#x$ output the description of M' that

- Given input y on Tape 1.
- Copies y on Tape 2, writes x on Tape 3
- Run (in an interleaved fashion) as M on x, K on y, and T on y.
- accept iff either
 - K accepts y, or,
 - M halts on x and T accepts y.
Proof of Rice’s Theorem 2

Notice that:

\[L(M') = \begin{cases}
 L(K) & \text{if } M \text{ does not halt on } x \\
 L(T) & \text{if } M \text{ halts on } x.
\end{cases} \]
Some applications

From Rice’s Theorem 1:

- “Accepts ϵ” is undecidable.
- “Accepts an infinite language” is undecidable.

$$\{ M \mid M \text{ accepts an infinite language} \}.$$

From Rice’s Theorem 2:

- “Accepts the empty language” is “highly” undecidable (non-r.e.).
- “Accepts a finite language” is highly undecidable (non-r.e.).

$$\{ M \mid M \text{ accepts a finite language} \}.$$

- “Accepts a regular language” is highly undecidable (non-r.e.).