More undecidable problems

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

20 November 2012
1 More problems about Turing Machines
Problem (a)

Is it decidable whether a given Turing machine has at least 481 states? Assume that the TM is given using the encoding below:

\[0^n10^m10^k10^s10^t10^u10^v10^p10^q10^b1010^p’10^a’10^q’10^b’100\cdots10^p''10^a''10^q''10^b''10. \]

00010000100101001000100010000 1000101000100 1000100100100 1010101010.
Problem (a)

Is it decidable whether a given Turing machine has at least 481 states? Assume that the TM is given using the encoding below:

\[0^n10^m10^k10^s10^t10^r10^u10^v10^p10^q10^b1010^p'10^q'10^b'100\ldots10^p''10^q''10^b''10.\]

Yes, it is.

We can give a TM \(N\) which given \(\text{enc}(M)\)

- Counts the number of states in \(M\) upto 481.
- Accepts if it reaches 481, rejects otherwise.
More problems about Turing Machines

More decidable/undecidable problems

Problem (b)

Is it decidable whether a given Turing machine takes more than 481 steps on input ϵ without halting?

00010000100101001000100010000 1 01000101000100 1 0100100100100 1 010101010.

Yes, it is. We can give a TM N which given $\text{enc}(M)$

Uses 4 tapes: On the 4th tape it writes 481 0's.

Uses the first 3 tapes to simulate M on input ϵ, like the universal TM U.

Blanks out a 0 from 4th tape for each 1-step simulation done by U.

Rejects if M halts before all 0's are blanked out on 4th tape, accepts otherwise.
Problem (b)

Is it decidable whether a given Turing machine takes more than 481 steps on input ϵ without halting?

Yes, it is. We can give a TM N which given $\text{enc}(M)$

- Uses 4 tapes: On the 4th tape it writes 481 0’s.
- Uses the first 3 tapes to simulate M on input ϵ, like the universal TM U.
- Blanks out a 0 from 4th tape for each 1-step simulation done by U.
- Rejects if M halts before all 0’s are blanked out on 4th tape, accepts otherwise.
Problem (c)

Is it decidable whether a given Turing machine takes more than 481 steps on some input without halting?

00010000100101001000100010000 1 01000101000100 1 0100100100100 1 010101010.
More problems about Turing Machines

More decidable/undecidable problems

Problem (c)
Is it decidable whether a given Turing machine takes more than 481 steps on some input without halting?

Yes, it is.
Check if M runs for more than 481 steps on each input x of length upto 481. If so accept, else reject.
More problems about Turing Machines

More decidable/undecidable problems

Problem (d)

Is it decidable whether a given Turing machine takes more than 481 steps on all inputs without halting?

00010000100101001000100010000 1 01000101000100 1 0100100100100 1 010101010 00010000101001001000100010000 1 01000101000100 1 0100100100100 1 010101010.
More problems about Turing Machines

More decidable/undecidable problems

Problem (d)
Is it decidable whether a given Turing machine takes more than 481 steps on all inputs without halting?

```
00010000100101001000100010000 1 01000101000100 1 0100100100100 1 010101010
```

Yes, it is.
Check if M runs for more than 481 steps on each input x of length upto 481. If so accept, else reject.

```
1 2 3 ··· 481 482
 detach a a b a b a a a b b ···
```
More problems about Turing Machines

More decidable/undecidable problems

Problem (e)
Is it decidable whether a given Turing machine moves its head more than 481 cells away from the left-end marker, on input ϵ?

000100001010010010000100100010000 1 01000101000100 1 0100100100100 1 010101010.

Yes, it is. Simulate M on ϵ for up to $m \cdot 482 \cdot k$ steps. If M visits the 482nd cell, accept, else reject.
More problems about Turing Machines

More decidable/undecidable problems

Problem (e)

Is it decidable whether a given Turing machine moves its head more than 481 cells away from the left-end marker, on input ϵ?

Yes, it is.

Simulate M on ϵ for upto $m^{481} \cdot 482 \cdot k$ steps. If M visits the 482nd cell, accept, else reject.
Problem (f)

Is it decidable whether a given Turing machine accepts the null-string ϵ?
More problems about Turing Machines

More decidable/undecidable problems

Problem (f)

Is it decidable whether a given Turing machine accepts the null-string ϵ?

No.
If it were decidable, say by a TM N, then we could use N to decide HP as follows: Define a new machine N' which given input $M\#x$, outputs the description of a machine M' which:

- erases its input
- writes x on its input tape
- Behaves like M on x
- Accepts if M halts on x.

N' then calls N with input M'. N accepts M' iff M' accepts ϵ iff M halts on x.
Turing machine M' for Problem (f)

$L(M') = \begin{cases}
A^* & \text{if } M \text{ halts on } x \\
\emptyset & \text{if } M \text{ does not halt on } x.
\end{cases}$
More problems about Turing Machines

More decidable/undecidable problems

Problem (g)

Is it decidable whether a given Turing machine accepts any string at all? That is, is \(L(M) \neq \emptyset \)?
Problem (h)

Is it decidable whether a given Turing machine accepts all strings? That is, is $L(M) = A^*$?
More problems about Turing Machines

More decidable/undecidable problems

Problem (i)
Is it decidable whether a given Turing machine accepts a finite set?
Problem (j)

Is it decidable whether a given Turing machine accepts a regular set?

Given M and x, build a new machine M' that behaves as follows:

1. Saves its input y on tape 2.
2. Writes x on tape 1.
3. Runs as M on x.
4. If M gets into a halting state, then M' takes back control, runs as M_R on y, (Here M_R is any TM that accepts a non-regular language R, say $R = \{a^n b^n | n \geq 0\}$).

M' accepts iff M_R accepts.
Problem (j)

Is it decidable whether a given Turing machine accepts a regular set?

Given M and x, build a new machine M' that behaves as follows:

1. Saves its input y on tape 2.
2. Writes x on tape 1.
3. Runs as M on x.
4. If M gets into a halting state, then
 - M' takes back control,
 - Runs as M_R on y,
 - (Here M_R is any TM that accepts a non-regular language R, say $R = \{a^n b^n \mid n \geq 0\}$).
 - M' accepts iff M_R accepts.
Turing machine M' for Problem (j)

$$L(M') = \begin{cases} R & \text{if } M \text{ halts on } x \\
\emptyset & \text{if } M \text{ does not halt on } x. \end{cases}$$
More problems about Turing Machines

More decidable/undecidable problems

Problem (k)

Is it decidable whether a given Turing machine accepts a CFL?
More decidable/undecidable problems

Problem (I)
Is it decidable whether a given Turing machine accepts a recursive set?