A Linear Algorithm for Testing Equivalence of Finite Automata

Namrata Jain

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

October 30, 2013
Outline

1 Introduction
 - Problem Definition
 - Previous Work

2 Algorithm
 - Intuition
 - Algorithm
 - Example 1
 - Example 2

3 Analysis - Correctness and Time complexity
 - Correctness
 - Time Complexity
Plan

1. Introduction
 - Problem Definition
 - Previous Work

2. Algorithm
 - Intuition
 - Algorithm
 - Example 1
 - Example 2

3. Analysis - Correctness and Time complexity
 - Correctness
 - Time Complexity
A Quick Recap

DFA over $\Sigma : M = (Q, s, \delta, F)$

- Q is a finite set of states
- $s \in Q$ represents the start state
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $F \subseteq Q$ is the set of final states

Define $\hat{\delta} : Q \times \Sigma^* \rightarrow Q$

- $\hat{\delta}(q, \epsilon) = q$
- $\hat{\delta}(q, w \cdot a) = \delta(\hat{\delta}(q, w), a)$

Language accepted by DFA M (Denoted by $L(M)$)

$$L(M) = \{ w \in \Sigma^* \mid \hat{\delta}(s, w) \in F \}$$
Problem Definition

Input: 2 DFA’s over Σ
- $M_1 = (Q_1, s_1, \delta_1, F_1)$
- $M_2 = (Q_2, s_2, \delta_2, F_2)$

Output: Is $L(M_1) = L(M_2)$?
- $\forall w \in \Sigma^*, \ \hat{\delta}_1(s_1, w) \in F_1 \iff \hat{\delta}_2(s_2, w) \in F_2$
Existing Solutions

- Previous algorithms have a time complexity of
 1. $O(n^2)$
 2. $O(n \log n)$
- Hopcroft-Karp algorithm has a time complexity of $O(n|\Sigma|)$

\[n = |Q_1| + |Q_2| \]
Plan

1. Introduction
 - Problem Definition
 - Previous Work

2. Algorithm
 - Intuition
 - Algorithm
 - Example 1
 - Example 2

3. Analysis - Correctness and Time complexity
 - Correctness
 - Time Complexity
Equivalent States

Two states \(p \) and \(q \) are said to be equivalent \((p \equiv q) \) if

\[
\forall p, q \in Q_1 \cup Q_2 \quad \forall w \in \Sigma^*, \\
\hat{\delta}(p, w) \in F_1 \cup F_2 \iff \hat{\delta}(q, w) \in F_1 \cup F_2
\]

Right invariant Equivalence Relation

A equivalence relation \(\equiv \) over \(Q_1 \cup Q_2 \) is right invariant if

\[
\forall p, q \in Q_1 \cup Q_2 \quad \forall a \in \Sigma, \\
\delta(p, a) \equiv \delta(q, a)
\]
Intuition

- \(L(M_1) = L(M_2) \)
 \(\implies s_1 \text{ and } s_2 \text{ are equivalent} \)
 \(\implies \delta(s_1, a) = \delta(s_2, a) \)

- We begin by assuming \(s_1 \) and \(s_2 \) equivalent.

- Sets are merged whenever it is found two states need to be equivalent for the assumption to hold.

- When the process terminates, \(M_1 \) and \(M_2 \) are equivalent if none of the sets has a final and a non-final state simultaneously.
Data Structure Used

- Data Structure used is a linear list of sets of elements. Each list has a name.
- It can execute only two types of instructions:
 1. **FIND(x)**: It returns the name of the set containing x
 2. **MERGE(A, B, C)**: It merges set A and B and names it C
- A sequence of n instructions takes $O(n)$ time.
Algorithm

1. **Initialize Data Structures**
 - a. For all $q \in Q_1 \cup Q_2$, create and initialize a set in Linear List with name q
 - b. Stack $= \emptyset$

2. **Assume s_1 and s_2 to be equivalent**
 - a. MERGE(s_1, s_2, s_2)
 - b. Push(s_1, s_2)

3. **Repeat until stack is empty**
 - a. Pop (q_1, q_2)
 - b. $r_1 = FIND(\delta(q_1, a))$
 - c. $r_2 = FIND(\delta(q_2, a))$
 - d. If $r_1 \neq r_2$
 - i. MERGE(r_1, r_2, r_2)
 - ii. Push(r_1, r_2)

4. **Check if equivalent**
 Scan states on each list. Output “TRUE” iff no list contains a final and a non-final state and “FALSE” otherwise
Example 1: Step 1

Figure 1: DFA 1

Figure 2: DFA 2

Stack: ϕ

Linear List: $\{q_1\}, \{q_2\}, \{q_3\}, \{q_4\}, \{q_5\}, \{q_6\}$

Figure 3: Stack and Linear List
Example 1: Step 2

![DFA 1](image1)

Start: q_1 and q_5 can both start.

Stack: \{q_1, q_5\}
Linear List: \{q_1, q_5\}, \{q_2\}, \{q_3\}, \{q_4\}, \{q_6\}

Figure 3: Stack and Linear List
Example 1: Step 3

Figure 1: DFA 1

Stack: \{q_2, q_6\}
Linear List: \{q_1, q_5\}, \{q_2, q_6\}, \{q_3\}, \{q_4\}

Figure 2: DFA 2

Figure 3: Stack and Linear List
Example 1: Step 3

Figure 1: DFA 1

Stack: \{q_3, q_5\}
Linear List: \{q_1, q_3, q_5\}, \{q_2, q_6\}, \{q_4\}

Figure 2: DFA 2

Figure 3: Stack and Linear List
Example 1: Step 3

Stack: \{q_4, q_6\}
Linear List: \{q_1, q_3, q_5\}, \{q_2, q_4, q_6\}

Figure 1: DFA 1

Figure 2: DFA 2

Figure 3: Stack and Linear List
Example 1: Step 3

Figure 1: DFA 1

Figure 2: DFA 2

Stack: φ
Linear List: \{q_1, q_3, q_5\}, \{q_2, q_4, q_6\}

Figure 3: Stack and Linear List
Example 2: Step 1

Stack: \(\emptyset \)
Linear List: \(\{ q_1 \}, \{ q_2 \}, \{ q_3 \}, \{ q_4 \} \)

Figure 3: Stack and Linear List
Example 2: Step 2

Stack: \{q_1, q_3\}
Linear List: \{q_1, q_3\}, \{q_2\}, \{q_4\}

Figure 3: Stack and Linear List
Example 2 : Step 3

Figure 1 : DFA 1

Figure 2 : DFA 2

Stack : \{q_2, q_3\}, \{q_1, q_4\}
Linear List : \{q_1, q_2, q_3, q_4\}

Figure 3 : Stack and Linear List
Example 2 : Step 3

Stack : $\{q_2, q_3\}$
Linear List : $\{q_1, q_2, q_3, q_4\}$

Figure 3 : Stack and Linear List
Example 2: Step 3

Stack: ϕ
Linear List: $\{q_1, q_2, q_3, q_4\}$

Figure 3: Stack and Linear List
Plan

1. Introduction
 - Problem Definition
 - Previous Work

2. Algorithm
 - Intuition
 - Algorithm
 - Example 1
 - Example 2

3. Analysis - Correctness and Time Complexity
 - Correctness
 - Time Complexity
Notation

Connecting Sequence
A sequence of states q_1, q_2, \ldots, q_r is a connecting sequence if
- $\forall a \in \Sigma$, $\delta(q_i, a)$ and $\delta(q_{i+1}, a)$ are on same list
- The pair (q_i, q_{i+1}) is on stack

Joined States
States p and q are joined by the connecting sequence q_1, q_2, \ldots, q_r if $p = q_1$ and $q = q_r$
Lemma

E is an equivalence relation defined on \(p, q \in S_1 \cup S_2 \) s.t. \(pEq \) iff \(p \) and \(q \) appear on same list at the end of the algorithm. It is coarsest right invariant equivalence identifying \(s_1 \) and \(s_2 \).
Lemma

E is an equivalence relation defined on \(p, q \in S_1 \cup S_2 \) s.t. \(pEq \) iff \(p \) and \(q \) appear on same list at the end of the algorithm. It is coarsest right invariant equivalence identifying \(s_1 \) and \(s_2 \).

Proof :

- **Coarsest Equivalence Relation**
 Two lists are merged only if \(\exists p_1, p_2 \in Q_1 \cup Q_2 \) are on the same list and \(\forall a \in \Sigma \delta_1(p_1, a) \) and \(\delta(p_2, a) \) are on different lists. Since does not make too many identifications \(\Rightarrow \) it is coarsest.
Right Invariant Equivalence Relation

Induction Hypothesis: Before k^{th} iteration of the 'while' loop, if (p, q) are on the same list, then p and q are joined by a connecting sequence.

Basis: $k=1$

s_1, s_2 are only in the same set and (s_1, s_2) are at the stack top.

$\Rightarrow s_1$ and s_2 are joined by a connecting sequence.

Induction Step:

- If p and q are joined before the k^{th} iteration, they are joined after k^{th} iteration also.
- Assume p and q are on the same list after k^{th} iteration
 1. p and q were on same list before the k^{th} iteration, they remain so.
 2. Several lists merge into one list because the join relation is reflexive, symmetric and transitive.
The given algorithm is correct.

Proof:

Let E' be a right invariant equivalence relation such that $\forall p, q \in Q_1 \cup Q_2 \forall w \in \Sigma^* \hat{\delta}(p, w) \in F_1 \cup F_2$ iff $\hat{\delta}(q, w) \in F_1 \cup F_2$.

Since E' is right invariant $\Rightarrow E'$ is a refinement of E.

Since E' cannot identify final and non-final states, neither can E.

\Rightarrow No list can contain both final and non-final states.
The given algorithm is correct.

Proof:

- \(M_1 \equiv M_2 \)
 - Let \(E' \) be a right invariant equivalence relation s.t. \(\forall p, q \in Q_1 \cup Q_2 \forall w \in \Sigma^* \hat{\delta}(p, w) \in F_1 \cup F_2 \) iff \(\hat{\delta}(q, w) \in F_1 \cup F_2 \)
 - Since \(E' \) is right invariant \(\Rightarrow E' \) is a refinement of \(E \)
 - Since \(E' \) can not identify final and non-final states neither can \(E \)
 \(\Rightarrow \) No list can contain both final and non-final state.
Theorem - Proof Contd.

- If $M_1 \neq M_2$, some list contains final and non-final state
 - $\exists w \in \Sigma^* : \hat{\delta}(s_1, w) \in F$ and $\hat{\delta}(s_2, w) \notin F$
 - Since E is right invariant (Lemma), $\hat{\delta}(s_1, w) \ E \ \hat{\delta}(s_2, w)$
 - $\implies \hat{\delta}(s_1, w)$ and $\hat{\delta}(s_2, w)$ are in the same list
 - \implies A list contains final and non-final state
Time Complexity Analysis

Theorem

Execution time of the algorithm is $n \times (|Q_1| + |Q_2|)$.

Proof:

Step 1, 2 and 3 take $O(n)$ time.

Step 3 takes $O(m \times |\Sigma|)$ time where m is the number of pairs pushed/popped on the stack. Each time a pair is pushed on to the stack, total number of sets are decreased by 1. As there were n sets in the beginning, at most $(n-1)$ pairs are pushed/popped. Number of pairs pushed/popped from the stack is therefore bounded by n.

A Linear Algorithm for Testing Equivalence of Finite Automata

Namrata Jain
Theorem

Execution time of the algorithm is $n \times (|Q_1| + |Q_2|)$.

Proof:

- Step 1, 2 and 3 take $O(n)$ time.
- Step 3 takes $O(m \times |\Sigma|)$ time where m is the number of pairs pushed/popped on the stack.
 - Each time a pair is pushed on to the stack, total number of sets are decreased by 1.
 - As there were n sets in the beginning, atmost $(n-1)$ pairs are pushed/ popped.
 - Number of pairs pushed/ popped from the stack is therefore bounded by n.
Questions??

Thank You!!