Regular Expressions

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

19 August 2013
Outline

1. Regular Expressions
2. Kleene’s Theorem
3. Equation-based alternate construction
Examples of Regular Expressions

Expressions built from a, b, ϵ, using operators $+$, \cdot, and \ast.

- $(a^* + b^*) \cdot c$
 “Strings of only a’s or only b’s, followed by a c.”

- $(a + b)^*abb(a + b)^*$
 “contains abb as a subword.”

- $(a + b)^*b(a + b)(a + b)$
 “3rd last letter is a b.”

- $(b^*ab^*a)^*b^*$
Examples of Regular Expressions

Expressions built from a, b, ϵ, using operators $+$, \cdot, and \ast.

- $(a^* + b^*) \cdot c$

 “Strings of only a’s or only b’s, followed by a c.”

- $(a + b)^* a b b (a + b)^*$

 “contains abb as a subword.”

- $(a + b)^* b (a + b) (a + b)$

 “3rd last letter is a b.”

- $(b^* a b^* a)^* b^*$

 “Even number of a’s.”
Examples of Regular Expressions

Expressions built from a, b, ϵ, using operators $+$, \cdot, and \ast.

- $(a^* + b^*) \cdot c$
 “Strings of only a’s or only b’s, followed by a c.”

- $(a + b)^* abb (a + b)^*$
 “contains abb as a subword.”

- $(a + b)^* b(a + b)(a + b)$
 “3rd last letter is a b.”

- $(b^* ab^* a)^* b^*$
 “Even number of a’s.”

- Ex. Give regexp for “Every 4-bit block of the form $w[4i, 4i + 1, 4i + 2, 4i + 3]$ has even parity.”
Examples of Regular Expressions

Expressions built from a, b, ϵ, using operators $+$, \cdot, and \ast.

- $(a^* + b^*) \cdot c$
 “Strings of only a’s or only b’s, followed by a c.”

- $(a + b)^*abb(a + b)^*$
 “contains abb as a subword.”

- $(a + b)^*b(a + b)(a + b)$
 “3rd last letter is a b.”

- $(b^*ab^*a)^*b^*$
 “Even number of a’s.”

- Ex. Give regexp for “Every 4-bit block of the form $w[4i, 4i + 1, 4i + 2, 4i + 3]$ has even parity.”
 $(0000 + 0011 + \cdots + 1111)^*(\epsilon + 0 + 1 + \cdots + 111)$
Syntax of regular expressions over an alphabet A:

$$ r ::= \emptyset \mid a \mid r + r \mid r \cdot r \mid r^* $$

where $a \in A$.

Semantics: associate a language $L(r) \subseteq A^*$ with regexp r.

- $L(\emptyset) = \{\}$
- $L(a) = \{a\}$
- $L(r + r') = L(r) \cup L(r')$
- $L(r \cdot r') = L(r) \cdot L(r')$
- $L(r^*) = L(r)^*$.
Formal definitions

- Syntax of regular expressions over an alphabet A:

$$ r ::= \emptyset | a | r + r | r \cdot r | r^* $$

where $a \in A$.

- Semantics: associate a language $L(r) \subseteq A^*$ with regexp r.

 $$
 \begin{align*}
 L(\emptyset) &= \{\} \\
 L(a) &= \{a\} \\
 L(r + r') &= L(r) \cup L(r') \\
 L(r \cdot r') &= L(r) \cdot L(r') \\
 L(r^*) &= L(r)^*.
 \end{align*}
 $$

- Question: Do we need ϵ in syntax?

No. $\epsilon \equiv \emptyset^*$.
Formal definitions

- Syntax of regular expressions over an alphabet A:

$$r ::= \emptyset \mid a \mid r + r \mid r \cdot r \mid r^*$$

where $a \in A$.

- Semantics: associate a language $L(r) \subseteq A^*$ with regexp r.

 - $L(\emptyset) = \{\}$
 - $L(a) = \{a\}$
 - $L(r + r') = L(r) \cup L(r')$
 - $L(r \cdot r') = L(r) \cdot L(r')$
 - $L(r^*) = L(r)^*$.

- Question: Do we need ϵ in syntax?
 No. $\epsilon \equiv \emptyset^*$.
Example: Semantics of regexp

\[(a^* + b^*) \cdot c\]
Example: Semantics of regexp

\[(a^* + b^*) \cdot c\]
Example: Semantics of regexp

\((a^* + b^*) \cdot c\)
Example: Semantics of regexp

\[(a^* + b^*) \cdot c\]
Example: Semantics of regexp

\[(a^* + b^*) \cdot c\]
Kleene’s Theorem: $RE = DFA$

Class of languages defined by regular expressions coincides with regular languages.

Proof

- $RE \rightarrow DFA$: Use closure properties of regular languages.
- $DFA \rightarrow RE$:
Let \(\mathcal{A} = (Q, s, \delta, F) \) be given DFA.

Define \(L_{pq} = \{ w \in A^* \mid \hat{\delta}(p, w) = q \} \).

Then \(L(\mathcal{A}) = \bigcup_{f \in F} L_{sf} \).

For \(X \subseteq Q \), define \(L^X_{pq} = \{ w \in A^* \mid \hat{\delta}(p, w) = q \text{ via a path that stays in } X \text{ except for first and last states} \} \).

Then \(L(\mathcal{A}) = \bigcup_{f \in F} L^Q_{sf} \).
DFA \rightarrow RE: Kleene’s construction

Advantage:

$$L_{pq}^{X\cup\{r\}} = L_{pq}^X + L_{pr}^X \cdot (L_{rr}^X)^* \cdot L_{rq}^X.$$
DFA → RE: Kleene’s construction (2)

Method:

- Begin with L_Q^f for each $f \in F$.
- Simplify by using terms with strictly smaller X’s:

$$L_{pq}^{X \cup \{r\}} = L_{pq}^X + L_{pr}^X \cdot (L_{rr}^X)^* \cdot L_{rq}^X.$$

- For base terms, observe that

$$L_{pq}^\emptyset = \begin{cases}
\{ a \mid \delta(p, a) = q \} & \text{if } p \neq q \\
\{ a \mid \delta(p, a) = q \} \cup \{ \epsilon \} & \text{if } p = q.
\end{cases}$$

- Exercise: convert NFA/DFA’s below to RE’s:
DFA \rightarrow RE: Kleene’s construction (2)

Method:

- Begin with L_{sf}^Q for each $f \in F$.
- Simplify by using terms with strictly smaller X’s:

\[
L_{pq}^{X \cup \{r\}} = L_{pq}^X + L_{pr}^X \cdot (L_{rr})^* \cdot L_{rq}^X.
\]

- For base terms, observe that

\[
L_{pq}^\{\} = \begin{cases}
\{ a \mid \delta(p, a) = q \} & \text{if } p \neq q \\
\{ a \mid \delta(p, a) = q \} \cup \{ \varepsilon \} & \text{if } p = q.
\end{cases}
\]

- Exercise: convert NFA/DFA’s below to RE’s:
DFA \rightarrow RE using system of equations

- **Aim:** to construct a regexp for
 \[L_q = \{ w \in A^* \mid \hat{\delta}(q, w) \in F \} \].

- **Note that** $L(A) = L_s$.

- **Example:**

 Set up equations to capture L_q's:

 \[
 x_e = b \cdot x_e + a \cdot x_o \\
 x_o = a \cdot x_e + b \cdot x_o + \epsilon.
 \]

- **Solution is a** RE for each x, such that languages denoted by LHS and RHS RE's coincide.
Aim: to construct a regexp for

\[L_q = \{ w \in A^* \mid \hat{\delta}(q, w) \in F \} \].

Note that \(L(A) = L_s \).

Example:

Set up equations to capture \(L_q \)'s:

\[
\begin{align*}
x_e &= b \cdot x_e + a \cdot x_o \\
x_o &= a \cdot x_e + b \cdot x_o + \epsilon.
\end{align*}
\]

Solution is a RE for each \(x \), such that languages denoted by LHS and RHS RE’s coincide.
Solutions to a system of equations

- \(L_q \)'s are a solution to the system of equations
- In general there could be many solutions to equations.
 - Consider \(x = A^*x \) (Here \(A \) is the alphabet). What are the solutions to this equation?
- In the case of equations arising out of automata, \(L_q \)'s can be seen to be the unique solution to the equations.
Computing the least solution to a system of equations

- Equations arising from our automaton can be viewed as:
 \[
 \begin{bmatrix}
 x_e \\
 x_o
 \end{bmatrix} = \begin{bmatrix}
 b & a \\
 a & b
 \end{bmatrix} \begin{bmatrix}
 x_e \\
 x_o
 \end{bmatrix} + \begin{bmatrix}
 \epsilon \\
 \emptyset
 \end{bmatrix}
 \]

- System of linear equations over regular expressions have the general form:
 \[
 X = AX + B
 \]
 where \(X\) is a column vector of \(n\) variables, \(A\) is an \(nxn\) matrix of regular expressions, and \(B\) is a column vector of \(n\) regular expressions.

- Claim: The column vector \(A^*B\) represents the least solution to the equations above. [See Kozen, Supplementary Lecture A].

- Definition of \(A^*\) when \(A\) is a 2x2 matrix:
 \[
 \begin{bmatrix}
 a & b \\
 c & d
 \end{bmatrix}^* = \begin{bmatrix}
 (a + bd^*c)^* & (a + bd^*c)^*bd^* \\
 (d + ca^*b)^*ca^* & (d + ca^*b)^*
 \end{bmatrix}
 \]