Myhill-Nerode Theorem

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

23 August 2012
Outline

1. Overview
2. Myhill-Nerode Theorem
3. Correspondence between DA’s and MN relations
4. Canonical DA for L
5. Computing canonical DFA
Myhill-Nerode Theorem: Overview

- Every language L has a “canonical” deterministic automaton accepting it.
 - Every other DA for L is a “refinement” of this canonical DA.
 - There is a unique DA for L with the minimal number of states.
- Holds for any L (not just regular L).
- L is regular iff this canonical DA has a finite number of states.
- There is an algorithm to compute this canonical DA from any given finite-state DA for L.
Illustrating “refinement” of DA: Example 1

Every DA for L is a “refinement” of this canonical DA:
Every DA for L is a “refinement” of this canonical DA:
Myhill-Nerode Theorem

Canonical equivalence relation \equiv_L on A^* induced by $L \subseteq A^*$:

$$x \equiv_L y \text{ iff } \forall z \in A^*, \, xz \in L \text{ iff } yz \in L.$$

$x \not\equiv_L y$ iff

Theorem (Myhill-Nerode)

L is regular iff \equiv_L is of finite index (that is has a finite number of equivalence classes).
Exercise 1

Describe the equivalence classes for $L = \text{“Odd number of } a\text{’s”}$.
Exercise 2

Describe precisely the equivalence classes of \equiv_L for the language $L \subseteq \{a, b\}^*$ comprising strings in which 2nd last letter is a b.
Exercise 2

Describe precisely the equivalence classes of \equiv_L for the language $L \subseteq \{a, b\}^*$ comprising strings in which 2nd last letter is a b.

![Diagram of DFA](image)
Exercise 3

Describe the equivalence classes of \(\equiv_L \) for the language

\[L = \{ a^n b^n \mid n \geq 0 \}. \]
Exercise 3

Describe the equivalence classes of \equiv_L for the language $L = \{a^n b^n \mid n \geq 0\}$.

Note: The natural deterministic PDA for L gives this DA.
Exercise 3

Describe the equivalence classes of \equiv_L for the language $L = \{a^n b^n \mid n \geq 0\}$.

Note: The natural deterministic PDA for L gives this DA.
Myhill-Nerode (MN) relations for a language

- An **MN relation** for a language \(L \) on an alphabet \(A \) is an equivalence relation \(R \) on \(A^* \) satisfying
 1. \(R \) is right-invariant (i.e. \(xRy \implies xaRya \) for each \(a \in A \).)
 2. \(R \) refines (or “respects”) \(L \) (i.e. \(xRy \implies x, y \in L \) or \(x, y \notin L \)).
Deterministic Automata for L and MN relations for L

DA for L and MN relations for L are in 1-1 correspondence (they represent each other).

Maps $A \rightarrow R_A$ and $A_R \leftarrow R$ are inverses of each other.
Example DA and its induced MN relation

L is “Odd number of a’s”:

- **Example DA:**
 - States: a, b
 - Transitions: $a \rightarrow a$, $b \rightarrow b$, $a \rightarrow b$, $b \rightarrow a$

- **MN Relation R_A:**
 - Equivalence classes:
 - ϵ: $\{a\}$
 - a: $\{aa, aaa\}$
 - b: $\{ab, baa\}$

- **Canonical DFA:**
 - States: ϵ, a, ϵ, a
 - Transitions: $\epsilon \rightarrow a$, $a \rightarrow a$, $\epsilon \rightarrow \epsilon$, $a \rightarrow a$

- **MN Relation A_R:**
 - Equivalence classes:
 - ϵ: $\{\epsilon\}$
 - a: $\{aa, aaa\}$
 - b: $\{ab, baa\}$

Deterministic Automata for \(L \) **and MN relations for** \(L \)

DA (with no unreachable states) for \(L \) **and MN relations for** \(L \) **are in 1-1 correspondence.**

\[
\mathcal{A} \rightarrow R_{\mathcal{A}} \quad \mathcal{A}_R \rightarrow R
\]

Maps \(\mathcal{A} \rightarrow R_{\mathcal{A}} \) **and** \(\mathcal{A}_R \leftarrow R \) **are inverses of eachother.**
The relation \equiv_L refines all MN-relations for L

Lemma

Let L be any language over an alphabet A. Let R be any MN-relation for L. Then R refines \equiv_L.

Proof: To prove that xRy implies $x \equiv_L y$. Suppose $x \not\equiv_L y$. Then there exists z such that (WLOG) $xz \in L$ and $yz \not\in L$. Suppose xRy. Since its an MN relation for L, it must be right invariant; and hence $xzRyz$. But this contradicts the assumption that R respects L.

As a corollary we have:

Theorem (Myhill-Nerode)

L is regular iff \equiv_L is of finite index (that is has a finite number of equivalence classes).
Lemma

Let L be any language over an alphabet A. Let R be any MN-relation for L. Then R refines \equiv_L.

Proof: To prove that xRy implies $x \equiv_L y$. Suppose $x \not\equiv_L y$. Then there exists z such that (WLOG) $xz \in L$ and $yz \not\in L$. Suppose xRy. Since its an MN relation for L, it must be right invariant; and hence $xzRyz$. But this contradicts the assumption that R respects L. As a corollary we have:

Theorem (Myhill-Nerode)

L is regular iff \equiv_L is of finite index (that is has a finite number of equivalence classes).
The relation \equiv_L refines all MN-relations for L

Lemma

Let L be any language over an alphabet A. Let R be any MN-relation for L. Then R refines \equiv_L.

Proof: To prove that xRy implies $x \equiv_L y$. Suppose $x \not\equiv_L y$. Then there exists z such that (WLOG) $xz \in L$ and $yz \not\in L$. Suppose xRy. Since its an MN relation for L, it must be right invariant; and hence $xzRyz$. But this contradicts the assumption that R respects L.

As a corollary we have:

Theorem (Myhill-Nerode)

L is regular iff \equiv_L is of finite index (that is has a finite number of equivalence classes).
We call $A_{\equiv L}$ the “canonical” DA for L.

In what sense is $A_{\equiv L}$ canonical?

- Every other DA for L is a refinement of $A_{\equiv L}$.
- A is a refinement of B if there is a stable partitioning \sim of A such that quotient of A under \sim (written A/\sim) is isomorphic to B.
- Stable partitioning of $A = (Q, s, \delta, F)$ is an equivalence relation \sim on Q such that:
 - $p \sim q$ implies $\delta(p, a) \sim \delta(q, a)$.
 - If $p \sim q$ and $p \in F$, then $q \in F$ also.
- Note that if \sim is a stable partitioning of A, then A/\sim accepts the same language as A.
Example: 1

A stable partitioning shown by pink and light pink classes, and below, the quotiented automaton:
Example: 2
Proving canonicity of $A_{\equiv L}$

Let A be a DA for L with no unreachable states. Then $A_{\equiv L}$ represents a stable partitioning of A. (Use the refinement of \equiv_L by the MN relation R_A.)

$A_{\equiv L} \leftarrow \equiv_L$

$A \mapsto R_A$

ϵ

a

aaa

aa

ϵ

a

aaa

aa
Stable partitioning \(\approx \)

- Let \(\mathcal{A} = (Q, s, \delta, F) \) be a DA for \(L \) with no unreachable states.
- The canonical MN relation for \(L \) (i.e. \(\equiv_L \)) induces a “coarsest” stable partitioning \(\approx_L \) of \(\mathcal{A} \) given by
 \[
 p \approx_L q \quad \text{iff} \quad \exists x, y \in A^* \text{ such that } \hat{\delta}(s, x) = p \text{ and } \hat{\delta}(s, y) = q, \text{ with } x \equiv_L y.
 \]
- Define a stable partitioning \(\approx \) of \(\mathcal{A} \) by
 \[
 p \approx q \quad \text{iff} \quad \forall z \in A^* : \hat{\delta}(p, z) \in F \text{ iff } \hat{\delta}(q, z) \in F.
 \]
Example of \approx partitioning relation
Stable partitioning \approx is coarsest

Claim: \approx coincides with \approx_L.

$\approx_L = \approx$.

Proof:

$p \not\approx q$ iff $\exists x, y, z : \hat{\delta}(s, x) = p, \hat{\delta}(s, y) = q$, and

$\hat{\delta}(p, z) \in F$ but $\hat{\delta}(q, z) \not\in F$.

iff $p \not\approx_L q$.
Algorithm to compute \(\approx \) for a given DFA

Input: DFA \(\mathcal{A} = (Q, s, \delta, F) \).
Output: \(\approx \) for \(\mathcal{A} \).

1. Initialize entry for each pair in table to “unmarked”.
2. Mark \((p, q)\) if \(p \in F\) and \(q \notin F\) or vice-versa.
3. Scan table entries and repeat till no more marks can be added:
 1. If there exists unmarked \((p, q)\) with \(a \in A\) such that \(\delta(p, a)\) and \(\delta(q, a)\) are marked, then mark \((p, q)\).
4. Return \(\approx\) as: \(p \approx q\) iff \((p, q)\) is left unmarked in table.
Example

Run minimization algorithm on DFA below:

![DFA Diagram]

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>p</th>
<th>t</th>
<th>q</th>
<th>s</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

Run minimization algorithm on DFA below:

```
<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>p</th>
<th>t</th>
<th>q</th>
<th>s</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>√</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>√</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>.</td>
<td>√</td>
<td>√</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>.</td>
<td>√</td>
<td>√</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>√</td>
<td>.</td>
<td>√</td>
<td>√</td>
<td>.</td>
<td></td>
</tr>
</tbody>
</table>
```
Example

Run minimization algorithm on DFA below:

![DFA Diagram]

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>p</th>
<th>t</th>
<th>q</th>
<th>s</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>.</td>
<td></td>
<td></td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>✓</td>
<td>.</td>
<td></td>
<td>.</td>
<td></td>
<td>.</td>
</tr>
<tr>
<td>t</td>
<td>✓</td>
<td>.</td>
<td></td>
<td>.</td>
<td></td>
<td>.</td>
</tr>
<tr>
<td>q</td>
<td>.</td>
<td>✓</td>
<td>✓</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>s</td>
<td>✓</td>
<td>.</td>
<td>✓</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>r</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>.</td>
</tr>
</tbody>
</table>
Run minimization algorithm on DFA below:

```
        p
   a        a
   b        b
   t        t
   s        s
   u        u
   r        r

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>p</th>
<th>t</th>
<th>q</th>
<th>s</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
```
Correctness of minimization algorithm

Claim: Algo always terminates.

- \(n(n - 1)/2 \) table entries in each scan, and at most \(n(n - 1)/2 \) scans.
- In fact, number of scans in algo is \(\leq n \), where \(n = |Q| \).

1. Consider modified step 3.1 in which mark check is done wrt the table at the end of previous scan.
2. Argue that at end of \(i \)-th scan algo computes \(\approx_i \), where
 \[
 p \approx_i q \text{ iff } \forall w \in A^* \text{ with } |w| \leq i : \hat{\delta}(p, w) \in F \text{ iff } \hat{\delta}(q, w) \in F.
 \]
3. Observe that \(\approx_{i+1} \) strictly refines \(\approx_i \), unless the algo terminates after scan \(i + 1 \). So modified algo does at most \(n \) scans.
4. Both versions mark the same set of pairs. Also if modified algo marks a pair, original algo has already marked it.
Correctness of minimization algorithm

Claim: Algo marks \((p, q)\) iff \(p \not\sim q\).

- \((\Rightarrow)\)
- \((\Leftarrow)\)