Deterministic PDA’s

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

25 October 2013
Outline

1. Deterministic PDA’s
2. Closure properties of DCFL’s
3. Complementing DPDA’s
A PDA with restrictions that:
- **At most** one move possible in any configuration.
 - For any state p, $a \in A$, and $X \in \Gamma$: at most one move of the form $(p, a, X) \rightarrow (q, \gamma)$ or $(p, \epsilon, X) \rightarrow (q, \gamma)$.
 - Effectively, a DPDA must see the current state, and top of stack, and decide whether to make an ϵ-move or read input and move.
- Accepts by final state.
- We need a right-end marker “⊣” for the input.
Example DPDA for \(\{a^n b^n \mid n \geq 0\} \)
Example DPDA for \(\{ a^n b^n \mid n \geq 0 \} \)

\[
\begin{align*}
(s, a, \perp) & \rightarrow (p, A \perp) \\
(p, a, A) & \rightarrow (p, AA) \\
(p, b, A) & \rightarrow (q, \varepsilon) \\
(q, b, A) & \rightarrow (q, \varepsilon) \\
(q, \perp, \perp) & \rightarrow (t, \perp) \\
(s, \perp, \perp) & \rightarrow (t, \perp).
\end{align*}
\]

Class of languages accepted by DPDA’s are called DCFL’s.
Closure Properties of DCFL’s

- All languages over A
- CFL
- DCFL
- Regular

- $a^n b^n c^n$
- $a^n b^n c^n$
- $a^n b^n$

Closed? Complementation
Closure Properties of DCFL’s

- All languages over A
- Regular
- DCFL
- CFL

<table>
<thead>
<tr>
<th>Language</th>
<th>Closed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complementation</td>
<td>√</td>
</tr>
<tr>
<td>Union</td>
<td></td>
</tr>
</tbody>
</table>
Closure Properties of DCFL’s

<table>
<thead>
<tr>
<th>Operation</th>
<th>Closed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complementation</td>
<td>√</td>
</tr>
<tr>
<td>Union</td>
<td>X</td>
</tr>
<tr>
<td>Intersection</td>
<td></td>
</tr>
</tbody>
</table>

All languages over A are represented in the diagram. DCFL is a subset of CFL, which is itself a subset of Regular languages.

- **DCFL**: $a^n b^n c^n$ and $a^n b^n c^n$ are examples of DCFL languages.
- **CFL**: $a^n b^n c^n$ is a subset of CFL.
- **Regular**: $a^n b^n$ is a subset of Regular languages.

The diagram illustrates the closure properties of DCFL's with respect to Complementation and Union, and the lack of closure under Intersection.

Examples
- **DCFL**: $L = \{a^n b^n c^n \mid n \geq 0\}$
- **CFL**: $L = \{a^n b^n c^n \mid 2 \leq n \leq 3\}$
- **Regular**: $L = \{a^n b^n \mid n \geq 0\}$
Closure Properties of DCFL’s

<table>
<thead>
<tr>
<th></th>
<th>Closed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complementation</td>
<td>√</td>
</tr>
<tr>
<td>Union</td>
<td>X</td>
</tr>
<tr>
<td>Intersection</td>
<td>X</td>
</tr>
</tbody>
</table>

All languages over A

DCFL

CFL

Regular

$\{a^n b^n c^n \mid n \geq 0\}$

$\{a^n b^n \mid n \geq 0\}$

Deterministic PDA’s

Closure properties of DCFL’s

Complementing DPDA’s
DCFL’s are closed under complementation

Theorem (Closure under complementation)

The class of languages definable by Deterministic Pushdown Automata (i.e. DCFL’s) is closed under complementation.
Problem with complementing a DPDA

Try flipping final and non-final states.
Problems?

Loops denote an infinite sequence of ϵ-moves.
Desirable form of DPDA

Goal is to convert the DPDA into the form:

That is, always reads its input and reaches a final/reject sink state. Then we can make \(r' \) the unique accepting state, to accept the complement of \(M \).
Construction - Step 1

Let $M = (Q, A, \Gamma, s, \delta, \bot, F)$ be given DPDA. First construct DPDA M' which

- Does not get stuck due to no transition or stack empty.
- Has only “sink” final states.
Construction - Step 1

Define $M' = (Q \cup Q' \cup \{s_1, r, r'\}, A, \Gamma \cup \{\bot\}, s_1, \delta', \bot, F')$ where

- $Q' = \{q' \mid q \in Q\}$ and $F' = \{f' \mid f \in F\}$.
- δ' is obtained from δ as follows:
 - Assume M is “complete” (does not get stuck due to no transition). (If not, add a dead state and add transitions to it.)
 - Make sure M' never empties its stack, keep track of whether we have seen end of input (primed states) or not (unprimed states):

- $(s_1, \epsilon, \bot) \rightarrow (s, \bot \bot)$
- $(p, \epsilon, \bot) \rightarrow (r, \bot)$ (if $p \in Q$)
- $(p', \epsilon, \bot) \rightarrow (r', \bot)$ (if $p' \notin F'$)
- $(p, \dashv, X) \rightarrow (q', \gamma)$ if $(p, \dashv, X) \rightarrow (q, \gamma) \in \delta$.
- $(p', \epsilon, X) \rightarrow (q', \gamma)$ if $(p, \epsilon, X) \rightarrow (q, \gamma) \in \delta$.
- $(r, a, X) \rightarrow (r, X)$
- $(r, \dashv, X) \rightarrow (r', X)$
- $(r', \epsilon, X) \rightarrow (r', X)$
- $(f', \epsilon, X) \rightarrow (f', X)$ (if $f \in F$) Also drop trans. going from f'.
After Step 1

DPDA M' only has the following kinds of behaviours now:

Loops denote an infinite sequence of ϵ-moves.
Construction - Step 2

A spurious transition in M' is a transition of the form $(p, \epsilon, X) \rightarrow (q, \gamma)$ such that

$$(p, \epsilon, X) \Rightarrow^* (p, \epsilon, X\alpha)$$

for some stack contents α.

Identify spurious transitions in M' and remove them:
If $(p, \epsilon, X) \rightarrow (q, \gamma)$ is a spurious transition, replace it with

$$(p, \epsilon, X) \rightarrow (r, X) \quad \text{if } p \in Q$$

$$(p, \epsilon, X) \rightarrow (r', X) \quad \text{if } p \in Q' - F'.$$
Correctness

Argue that:
- Deleting a spurious transition (starting from a non-F'-final state) does not change the language of M'.
- All infinite loops use a spurious transition.
 - Look at graph of stack height along infinite loop, and argue that there are infinitely many future minimas.

 ![Graph showing stack height over infinite loop](image)

- Further look at transitions applied at these points and observe that one must repeat.
- Thus replacing spurious transitions as described earlier will remove the remaining undesirable loops from M'''s behaviours.
Complementing

- Resulting M'' has the desired behaviour (every run either reaches a final sink state or the reject sink state r'.)

- Now make r' unique final state to complement the language of M.
Detecting spurious transitions

Question: How can we effectively detect spurious transitions?
Detecting spurious transitions

Question: How can we effectively detect spurious transitions?
Use algorithm for pushdown reachability.