Parikh’s Theorem for CFL’s

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

27 September 2013
Outline

1. Parikh map
2. Parikh’s theorem
3. Proof
Parikh map of a string

- Let $A = \{a_1, \ldots, a_n\}$ be a finite alphabet.
- The Parikh map of a string $w \in A^*$ is a vector in \mathbb{N}^n given by:
 \[\psi(w) = (\#a_1(w), \#a_2(w), \ldots, \#a_n(w)).\]
- For example if $A = \{a, b\}$, then $\psi(baabb) = (2, 3)$.
- Parikh map is also called the “letter-count” of a string.
- Extend the map to languages L over A:
 \[\psi(L) = \{\psi(w) \mid w \in L\}.\]
- What is $\psi(\{a^n b^n \mid n \geq 0\})$?
Parikh map of a string

- Let $A = \{a_1, \ldots, a_n\}$ be a finite alphabet.
- The Parikh map of a string $w \in A^*$ is a vector in \mathbb{N}^n given by:
 \[\psi(w) = (\#a_1(w), \#a_2(w), \ldots, \#a_n(w)) \]
- For example if $A = \{a, b\}$, then $\psi(baabb) = (2, 3)$.
- Parikh map is also called the “letter-count” of a string.
- Extend the map to languages L over A:
 \[\psi(L) = \{ \psi(w) \mid w \in L \} \]
- What is $\psi(\{a^n b^n \mid n \geq 0\})$?
 \[\{(n, n) \mid n \geq 0\} \]
- What is $\psi(\{w \in \{a, b\}^* \mid \#a(w) \leq \#b(w)\})$?
Parikh map of a string

- Let $A = \{a_1, \ldots, a_n\}$ be a finite alphabet.
- The **Parikh map** of a string $w \in A^*$ is a vector in \mathbb{N}^n given by:
 \[\psi(w) = (\#_{a_1}(w), \#_{a_2}(w), \ldots, \#_{a_n}(w)). \]
- For example if $A = \{a, b\}$, then $\psi(baabb) = (2, 3)$.
- Parikh map is also called the “letter-count” of a string.
- Extend the map to languages L over A:
 \[\psi(L) = \{\psi(w) \mid w \in L\}. \]

What is $\psi(\{a^n b^n \mid n \geq 0\})$?
- $\{(n, n) \mid n \geq 0\}$.

What is $\psi(\{w \in \{a, b\}^* \mid \#_a(w) \leq \#_b(w)\})$?
- $\{(i, j) \mid i \leq j\}$.
Semi-linear sets of vectors

- The set of vectors generated by a set of vectors \(u_1, \ldots, u_k \) in \(\mathbb{N}^n \), denoted \(\langle\langle u_1, \ldots, u_k \rangle\rangle \), is the set
 \[
 \{ d_1 \cdot u_1 + d_2 \cdot u_2 + \cdots + d_k \cdot u_k \mid d_i \in \mathbb{N} \}.
 \]

- A subset \(X \) of \(\mathbb{N}^n \) is called linear if there exist vectors \(u_0, u_1, \ldots, u_k \) such that
 \[X = u_0 + \langle\langle u_1, u_2, \ldots, u_k \rangle\rangle. \]
Semi-linear sets of vectors

- The set of vectors generated by a set of vectors u_1, \ldots, u_k in \mathbb{N}^n, denoted $\langle\langle u_1, \ldots, u_k \rangle\rangle$, is the set
 \[\{ d_1 \cdot u_1 + d_2 \cdot u_2 + \cdots + d_k \cdot u_k \mid d_i \in \mathbb{N} \} . \]

- A subset X of \mathbb{N}^n is called linear if there exist vectors u_0, u_1, \ldots, u_k such that
 \[X = u_0 + \langle\langle u_1, u_2, \ldots, u_k \rangle\rangle. \]

- A set of vectors is called semi-linear if it is a finite union of linear sets.
Parikh’s Theorem for CFL’s

Theorem (Parikh)

The Parikh map of a CFL is a semi-linear set. That is, if L is a CFL then $\psi(L)$ is semi-linear.

Some corollaries:
- Every CFL is “letter-equivalent” to a regular language.
 - For example: $\psi(\{a^n b^n \mid n \geq 0\})$
Parikh’s Theorem for CFL’s

Theorem (Parikh)

The Parikh map of a CFL is a semi-linear set. That is, if L is a CFL then $\psi(L)$ is semi-linear.

Some corollaries:
- Every CFL is “letter-equivalent” to a regular language.
 - For example: $\psi(\{a^n b^n \mid n \geq 0\}) = \psi((ab)^*)$.
- Lengths of a CFL forms an ultimately periodic set.
Parikh’s Theorem for CFL’s

Theorem (Parikh)

The Parikh map of a CFL is a semi-linear set. That is, if L is a CFL then $\psi(L)$ is semi-linear.

Some corollaries:

- Every CFL is “letter-equivalent” to a regular language.
 - For example: $\psi(\{a^n b^n \mid n \geq 0\}) = \psi((ab)^*)$.
- Lengths of a CFL forms an ultimately periodic set.
- CFL’s over a single-letter alphabet are regular.
Parikh’s Theorem for CFL’s

Theorem (Parikh)

The Parikh map of a CFL is a semi-linear set. That is, if \(L \) is a CFL then \(\psi(L) \) is semi-linear.

Some corollaries:

- Every CFL is “letter-equivalent” to a regular language.
 - For example: \(\psi(\{a^n b^n \mid n \geq 0\}) = \psi((ab)^*) \).
- Lengths of a CFL forms an ultimately periodic set.
- CFL’s over a single-letter alphabet are regular.

Is Parikh’s theorem a sufficient condition for context-freeness as well?
Parikh’s Theorem for CFL’s

Theorem (Parikh)

The Parikh map of a CFL is a semi-linear set. That is, if L is a CFL then $\psi(L)$ is semi-linear.

Some corollaries:

- Every CFL is “letter-equivalent” to a regular language.
 - For example: $\psi(\{a^n b^n \mid n \geq 0\}) = \psi((ab)^*)$.
- Lengths of a CFL forms an ultimately periodic set.
- CFL’s over a single-letter alphabet are regular.

Is Parikh’s theorem a sufficient condition for context-freeness as well?

- No, since $\psi(\{a^n b^n c^n \mid n \geq 0\}) = \{(n, n, n) \mid n \geq 0\}$ is semi-linear.
Idea of proof

- Partition parse trees into finite number of blocks
- Each block is represented by a “minimal” parse trees and associated “basic pumps”.
- Argue that set of strings derived in each block is linear.
Proof: Pumps

Let us fix a CFG $G = (N, A, S, P)$ in CNF form.

- A **pump** is a derivation tree s which has at least two nodes, and $\text{yield}(s) = x \cdot \text{root}(s) \cdot y$, for some terminal strings x, y.

Example pumps for grammar $S \rightarrow aSb \mid SS \mid \epsilon$:

```
S
 / \  / \  /  \\
(\text{a} ) (S)  (\text{b})  \\
```

```
S
 / \  /  \\
(\text{a} ) (\text{S} )  (\text{b})  \\
```

```
S
 /  \\
(\text{a} )  (\text{S} )  (\text{b})  \\
```
Growing and shrinking with pumps
Growing and shrinking with pumps
A pump is basic if it is \ll-minimal. Thus a pump s is a basic pump if it cannot be shrunk by some pump and still remain a pump.

- First pump is basic but second is not.
- How many pumps are there?
Basic Pumps

A pump is **basic** if it is \ll-minimal. Thus a pump s is a basic pump if it cannot be shrunk by some pump and still remain a pump.

- First pump is basic but second is not.
- How many pumps are there? Infinitely many.
- How many basic pumps are there?
Basic Pumps

A pump is **basic** if it is \ll-minimal. Thus a pump s is a basic pump if it cannot be shrunk by some pump and still remain a pump.

![Diagram of basic pumps](attachment:image.png)

- First pump is basic but second is not.
- How many pumps are there? Infinitely many.
- How many basic pumps are there? Finitely many since their height is bounded by $2|N|$.
Basic pumps height bounded by $2N$

Consider longest path from root to leaf in a pump. The number of nodes on it is bounded by $2N$.
Let s and t be derivation trees of terminal strings starting from start symbol S.

Then we say $s \leq t$ iff t can be grown from s by basic pumps whose non-terminals are contained in those of s (thus the pumps do not introduce any new non-terminals, and s and t have the same set of non-terminal nodes).

A parse tree s is thus \leq-minimal if it does not contain a basic pump that can be cut out without reducing the set of non-terminals that occur in s.

\leq-minimal trees can be seen to be finite in number (height bounded by $(p + 1)(n + 1)$).
Begin with the \(\leq \)-minimal derivation trees, say \(s_1, \ldots, s_k \).

Associate with each \(s_i \) the set of basic pumps whose non-terminals are contained in that of \(s_i \).

Argue that the set of derivation trees obtained by starting with \(s_i \) and growing using the associated basic pumps, gives rise to a set of strings whose Parikh map is linear.