Undecidability of the Halting Problem

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

21 November 2011
Outline

1. Universal Turing machine
2. Halting Problem
3. Some corollaries
We can construct a TM U that takes the encoding of a TM M and its input x, and “interprets” M on the input x.

U accepts if M accepts x, rejects if M rejects x, and loops if M loops on x.
Encoding a TM as a \(\{0, 1\}\)-string

\[0^n1^m1^k1^s1^t1^r1^u1^v\ \ 1\ 0^p1^a1^q1^b1^0\ \ 1\ 0^p'1^a'1^q'1^b'1^00\ \ \ldots\ \ 1\ 0^{p''}1^a''1^q''1^b''1^0.\]

represents a TM \(M\) with

- states \(\{1, 2, \ldots, n\}\).
- Tape alphabet \(\{1, 2, \ldots, m\}\).
- Input alphabet \(\{1, 2, \ldots, k\}\) (with \(k < m\)).
- Start state \(s \in \{1, 2, \ldots, n\}\).
- Accept state \(t \in \{1, 2, \ldots, n\}\).
- Reject state \(r \in \{1, 2, \ldots, n\}\).
- Left-end marker symbol \(u \in \{k + 1, \ldots, m\}\).
- Blank symbol \(v \in \{k + 1, \ldots, m\}\).
- Each string \(0^p1^a1^q1^b1^0\) represents the transition \((p, a) \rightarrow (q, b, L)\).
Example encoding of TM and its input

Input is encoded as $0^a10^b10^c$ etc.
What does the following TM do on input 001010?

0001000010010100100010001000010100010010010001001
0100010100010010010101010101010101010.
How the universal Turing machine works

- Use 3 tapes: for input $M \# x$, for current configuration, and for current state and position of head.
- Repeat:
 - Execute the transition of M applicable in the current config.
- Accept if M gets into t state, Reject if M gets into r state.
Fix an encoding enc of TM's as above.

Define the language

$$HP = \{enc(M)\#enc(x) \mid M \text{ halts on } x\}.$$
Undecidability of HP

Theorem (Turing)

The language HP is not recursive.
Proving undecidability of HP

Assume that we have a Turing machine M which decides HP. Then we can compute the entries of the table below:

| | ϵ | 0 | 1 | 00 | 01 | 10 | 11 | 000 | 001 | 010 | 011 | 111 | ... |
|-----|-------------|---|---|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|
| M_ϵ | L | H | L | L | H | H | L | L | L | L | L | L | ... |
| M_0 | L | L | L | L | L | L | L | L | L | L | L | L | ... |
| M_1 | H | H | L | H | L | H | L | H | L | H | H | ... |
| M_{00} | L | L | L | L | L | L | L | L | L | L | L | L | ... |
| M_{01} | L | H | L | H | L | H | L | H | L | L | L | L | ... |
| M_{10} | H | H | L | H | L | H | L | L | H | L | H | ... |
| M_{11} | L | H | L | L | L | H | L | L | L | L | L | L | ... |
| M_{000} | L | L | L | L | L | L | H | L | L | L | H | L | ... |
| ... | | | | | | | | | | | | | |

- For each $x \in \{0, 1\}^*$ let M_x denote the TM
 - M, if x is the encoding of TM M with input alphabet $0, 1$.
 - M_{loop} otherwise, where M_{loop} is a one-state Turing machine that loops on all its inputs.
A TM N that behaves differently from all TM’s

Let us assume we have a TM M that decides HP. Then we can define a TM N as follows: Given input $x \in \{0, 1\}^*$, it

- runs as M on $x \# x$.
- If M accepts (i.e. M_x halts on x), goes to a new “looping” state l and loops there.
- If M rejects (i.e. M_x loops on x), goes to the accept state t'.

N essentially “complements the diagonal” of the table: Given input $x \in \{0, 1\}^*$ it halts iff M_x loops on x.

Consider $y = enc(N)$. Then y cannot occur as any row of the table since the behaviour of N differs from all rows in the table. This is a contradiction.
Complement of HP is not r.e.

Fact 1: If \(L \) and \(\overline{L} \) are both r.e. then \(L \) (and \(\overline{L} \)) must be recursive.

- Let \(M \) accept \(L \) and \(M' \) accept \(\overline{L} \).
- We can construct a total TM that simulates \(M \) and \(M' \) on given input, one step at a time.
- Accept if \(M \) accepts, Reject if \(M' \) accepts.

Fact 2: HP is recursively enumerable.

- Just run the universal TM \(U \) on input \(M \# x \); accept iff \(U \) halts (i.e. \(M \) accepts or rejects \(x \)).

Corollary

The language \(\neg \)HP is not even recursively enumerable.
Universal Turing machine Halting Problem

Some corollaries

Where HP lies

All languages over A

- Regular
- RE
- Recursive
- CFL
- DCFL
- $a^n b^n c^n$
- $a^n b^n$
- $a^n c^n$
- $\neg HP$
- HP

$a^n b^n c^n$