Myhill-Nerode Theorem

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

2 September 2011
Outline

1. Overview
2. Myhill-Nerode Theorem
3. Correspondence between DA’s and MN relations
4. Canonical DA for \(L \)
5. Computing canonical DFA
Myhill-Nerode Theorem: Overview

- Every language L has a “canonical” deterministic automaton accepting it.
 - Every other DA for L is a “refinement” of this canonical DA.
 - There is a unique DA for L with the minimal number of states.
- Holds for any L (not just regular L).
- L is regular iff this canonical DA has a finite number of states.
- There is an algorithm to compute this canonical DA from any given finite-state DA for L.

Illustrating “refinement” of DA: Example 1

Every DA for L is a “refinement” of this canonical DA:
Illustrating “refinement” of DA: Example 2

Every DA for L is a “refinement” of this canonical DA:
Myhill-Nerode Theorem

Canonical equivalence relation \equiv_L on A^* induced by $L \subseteq A^*$:

$x \equiv_L y$ iff $\forall z \in A^*$, $xz \in L$ iff $yz \in L$.

$x \not\equiv_L y$ iff

Theorem (Myhill-Nerode)

L is regular iff \equiv_L is of finite index (that is has a finite number of equivalence classes).
Exercise 1

Describe the equivalence classes for $L = \text{"Odd number of } a\text{'}s\text{"}$.
Exercise 2

Describe precisely the equivalence classes of \equiv_L for the language $L \subseteq \{a, b\}^*$ comprising strings in which 2nd last letter is a b.
Exercise 2

Describe precisely the equivalence classes of \equiv_L for the language $L \subseteq \{a, b\}^*$ comprising strings in which 2nd last letter is a b.

\[\begin{array}{cccc}
\epsilon, a, \ast aa & b, \ast ab \\
\ast bb & \ast ba
\end{array} \]
Exercise 3

Describe the equivalence classes of \equiv_L for the language $L = \{ a^n b^n \mid n \geq 0 \}$.
Exercise 3

Describe the equivalence classes of \equiv_L for the language $L = \{a^n b^n \mid n \geq 0\}$.

- ε
- a
- aa
- aaa
- $aaaa$
- ab
- aab
- $aaab$
- $aaaab$
- $aaaaab$
- $a^2 b^2$
- $a^3 b^3$
- \ldots
- $a^4 b^2$
- $a^5 b^3$
- \ldots
- $a^4 b^3$
- \ldots
- $a^5 b^3$
- \ldots
- $a^6 b^3$
- \ldots
- b
- ab
- aab
- $aaab$
- $aaaab$
- $aaaaab$
- $aabb$
- \ldots
- abb
- \ldots
- $* b. * a. *$
- b
- \ldots
- a, b
An **MN relation** for a language L on an alphabet A is an equivalence relation R on A^* satisfying

1. R is right-invariant (i.e. $xRy \implies xaRya$ for each $a \in A$.)
2. R refines (or “respects”) L (i.e. $xRy \implies x, y \in L$ or $x, y \notin L$).
Deterministic Automata for L and MN relations for L

DA for L and MN relations for L are in 1-1 correspondence (they represent each other).

Maps $\mathcal{A} \xrightarrow{\ R_A\ }$ and $\mathcal{A}_R \xleftarrow{\ R\ }$ are inverses of each other.
Example DA and its induced MN relation

L is “Odd number of a’s”:

\[A \rightarrow R_A \]

\[R \rightarrow A_R \]

\[a \rightarrow a \]

\[b \rightarrow b \]

\[\epsilon \rightarrow \epsilon \]

\[a \rightarrow a \]

\[b \rightarrow b \]

\[a \rightarrow a \]

\[b \rightarrow b \]
Deterministic Automata for L and MN relations for L

DA (with no unreachable states) for L and MN relations for L are in 1-1 correspondence.

Maps $\mathcal{A} \rightarrow \mathcal{R}_A$ and $\mathcal{A}_R \leftarrow \mathcal{R}$ are inverses of each other.
The relation \equiv_L refines all MN-relations for L

Lemma

Let L be any language over an alphabet A. Let R be any MN-relation for L. Then R refines \equiv_L.
The relation \equiv_L refines all MN-relations for L

Lemma

Let L be any language over an alphabet A. Let R be any MN-relation for L. Then R refines \equiv_L.

Proof: To prove that xRy implies $x \equiv_L y$. Suppose $x \not\equiv_L y$. Then there exists z such that (WLOG) $xz \in L$ and $yz \not\in L$. Suppose xRy. Since its an MN relation for L, it must be right invariant; and hence $xzRyz$. But this contradicts the assumption that R respects L.
We call $A_{\equiv L}$ the “canonical” DA for L.

In what sense is $A_{\equiv L}$ canonical?

- Every other DA for L is a refinement of $A_{\equiv L}$.
- A is a refinement of B if there is a stable partitioning \sim of A such that quotient of A under \sim (written A/\sim) is isomorphic to B.
- Stable partitioning of $A = (Q, s, \delta, F)$ is an equivalence relation \sim on Q such that:
 - $p \sim q$ implies $\delta(p, a) \sim \delta(q, a)$.
 - If $p \sim q$ and $p \in F$, then $q \in F$ also.
- Note that if \sim is a stable partitioning of A, then A/\sim accepts the same language as A.
Example: 1
Example: 2
Proving canonicity of $A \equiv_L$
Example 1

Canonical DA for $L \subseteq \{a, b\}^*$ comprising strings in which 2nd last letter is a b.

![Diagram of DFA]

- ϵ, a, $.*$ aa
- b, $.*$ ab
- $.*$ bb
- $.*$ ba
Exercise 2

Canonical DA for \(L = \{ a^n b^n \mid n \geq 0 \} \).
Exercise 2

Canonical DA for \(L = \{ a^n b^n \mid n \geq 0 \} \).

Note: The natural deterministic PDA for \(L \) gives this DA.
Stable partitioning \approx

- Let $A = (Q, s, \delta, F)$ be a DA for L with no unreach. states.
- The canonical MN relation for L (i.e. \equiv_L) induces a “coarsest” stable partitioning \approx_L of A given by
 \[
 p \approx_L q \iff \exists x, y \in A^* \text{ such that } \hat{\delta}(s, x) = p \text{ and } \hat{\delta}(s, y) = q, \text{ with } x \equiv_L y.
 \]
- Define a stable partitioning \approx of A by
 \[
 p \approx q \iff \forall z \in A^* : \hat{\delta}(p, z) \in F \text{ iff } \hat{\delta}(q, z) \in F.
 \]
Example of \approx partitioning relation
Stable partitioning \approx is coarsest

Claim: \approx coincides with \approx_L.

$\approx_L = \approx$.

Proof:

$p \not\approx q$ iff $\exists x, y, z : \hat{\delta}(s, x) = p, \hat{\delta}(s, y) = q$, and $\hat{\delta}(p, z) \in F$ but $\hat{\delta}(q, z) \notin F$.

iff $p \not\approx_L q$.
Algorithm to compute \approx for a given DFA

Input: DFA $\mathcal{A} = (Q, s, \delta, F)$.
Output: \approx for \mathcal{A}.

1. Initialize entry for each pair in table to “unmarked”.
2. Mark (p, q) if $p \in F$ and $q \notin F$ or vice-versa.
3. Scan table entries and repeat till no more marks can be added:
 1. If there exists unmarked (p, q) with $a \in A$ such that $\delta(p, a)$ and $\delta(q, a)$ are marked, then mark (p, q).
4. Return \approx as: $p \approx q$ iff (p, q) is left unmarked in table.
Example

Run minimization algorithm on DFA below:

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>p</th>
<th>t</th>
<th>q</th>
<th>s</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Run minimization algorithm on DFA below:

Example

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>p</th>
<th>t</th>
<th>q</th>
<th>s</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Example

Run minimization algorithm on DFA below:

```
<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>p</th>
<th>t</th>
<th>q</th>
<th>s</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
```
Example

Run minimization algorithm on DFA below:

```
<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>p</th>
<th>t</th>
<th>q</th>
<th>s</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
```
Correctness of minimization algorithm

Claim: Algo always terminates.

- $n(n - 1)/2$ table entries in each scan, and at most $n(n - 1)/2$ scans.
- In fact, number of scans in algo is $\leq n$, where $n = |Q|$.

1. Consider modified step 3.1 in which mark check is done on table at the end of previous scan.
2. Argue that at end of i-th scan algo computes \approx_i, where

 $$p \approx_i q \iff \forall w \in A^* \text{ with } |w| \leq i : \hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F.$$

3. Observe that \approx_{i+1} strictly refines \approx_i, unless the algo terminates after scan $i + 1$. So modified algo does at most n scans.
4. Both versions mark the same set of pairs. Also if modified algo marks a pair, original algo has already marked it.
Correctness of minimization algorithm

Claim: Algo marks \((p, q)\) iff \(p \not\sim q\).

- \((\Rightarrow)\)
- \((\Leftarrow)\)