COLLAPSING NON-DETERMINISTIC AUTOMATA

By
TARUN JANGPANGI
And
REMISH LEONARD MINZ
NEED FOR MINIMIZATION

- Finite Automata are useful for many important applications

Applications
- Implementing and Designing digital circuits.
- The “lexical analyzer” of a typical compiler.
- Software for verifying system of all types that has finite number of distinct states.

- In case of implementing digital circuits it is always required to minimize the automata so that
 - It occupies less fabrication area.
 - Make the digital circuit simpler for analysis.
 - Make the digital circuit cost effective.
ISOMORPHISM IN NON-DETERMINISTIC AUTOMATA

- With respect to minimization, nondeterministic automata are not necessarily unique up to isomorphism.

For example:
NFA for 0^+

Both are minimal but not unique and not isomorphic.
Different algorithms for minimizing NFA

- Transformation reconstruction (by Kameda and Wiener)
- By autobisimulation
The method that we use for collapsing non-deterministic automata is “bisimulation”.

The collapsing relation between deterministic automata and bisimulation relation for nondeterministic automata are strongly related.

The latter generalizes the former in two significant ways.
- They work for non-deterministic automata
- They can relate two different automata.
BISIMULATION

Let
\[M = (Q_M, \Sigma, \Delta_M, S_M, F_M), \]
\[N = (Q_N, \Sigma, \Delta_N, S_N, F_N) \]
be two NFA's.

Let \(\approx \) be a binary relation relating states of \(M \) with states of \(N \);
i.e. \(\approx \) is subset of \(Q_M \times Q_N \).
Now for,
\[B \subseteq Q_N \]
Define, \[C_\approx (B) = \{ p \in Q_M \mid \exists q \in B, p \approx q \} \]
similarly for \(A \subseteq Q_M \)
Define, \[C_\approx (A) = \{ q \in Q_N \mid \exists p \in A, p \approx q \} \]
The relation \(\approx \) can be extended in a natural way to subset of \(Q_M \) and \(Q_N \).
For \(A \subseteq Q_M \) and \(B \subseteq Q_N \)
\[A \approx B \iff A \subseteq C_\approx (B) \text{ and } B \subseteq C_\approx (A) \]
\[\iff \forall p \in A \exists q \in B, p \approx q \text{ and } \forall q \in B \mid \exists p \in A, p \approx q. \]
The relation is called Bisimulation if the following three conditions are met.

(i) \(S_M \approx S_N \);
(ii) If \(p \approx q \) then for all \(a \in \Sigma \), \(\Delta_M (p,a) \approx \Delta_N (q,a) \)
(iii) If \(p \approx q \), then \(p \in F_M \) iff \(q \in F_N \).

- We can say that \(M \) and \(N \) are Bisimilar if there exist a Bisimulation between them.
- The Bisimilarity class of \(M \) is a family of all the NFA\'s that are Bisimilar to \(M \).
Basic Properties of Bisimulation

- Bisimulation is Symmetric.
 - If \approx is a bisimulation between M and N then its reverse
 \[
 \{(q, p) \mid p \approx q\}
 \]
 is a Bisimulation between M and N.

- Bisimulation is Transitive.
 - If \approx_1 is a bisimulation between M and N and \approx_2 is a
 bisimulation between N and P, then there composition $\approx_1 \circ \approx_2$
 \[
 = \{(p, r) \mid \exists q \ p \approx_1 q \text{ and } q \approx_2 r\}
 \]
 is a bisimulation between M and P.

- The union of any nonempty family of bisimulation between M and N is a bisimulation
 between M and N.
 - Let $\{\approx_i \mid i \in I\}$ be a non empty indexed set of bisimulations
 between M and N.
 Define by,
 \[
 \approx = \bigcup_i \approx_i ;
 \]
 thus $p \approx q \iff \exists i \in I, p \approx_i q$.

THEOREM: BISIMILAR AUTOMATA ACCEPT THE SAME SET.

Suppose \(\approx \) is a bisimulation between \(M \) and \(N \).

Then for any \(x \in \Sigma^* \)
\[\hat{\Lambda}_M (S_M, x) \approx \hat{\Lambda}_N (S_N, x). \]

By the conditions for bisimulation
\[\hat{\Lambda}_M (S_M, x) \cap F_m \neq \emptyset \text{ iff } \hat{\Lambda}_N (S_N, x) \cap F_N \neq \emptyset. \]

So by definition of acceptance for non deterministic automata, \(x \in L(M) \text{ iff } x \in L(N) \). Since \(x \) is arbitrary,
\(L(M) = L(N) \).
Let \(\approx \) be a bisimulation between \(M \) and \(N \). The **support** of \(\approx \) in \(M \) is a set \(C_{\approx} (Q_N) \) i.e. The set of states of \(M \) that are related by \(\approx \) to some states of \(N \).

Lemma : A state of \(M \) is in the support of all bisimulation involving \(M \) iff it is **accessible**.

Proof : Let \(\approx \) be any arbitrary bisimulationaton between \(M \) and another automata.

then, Every start state of \(M \) is in support of \(\approx \) ; if \(p \) is in support of \(\approx \) then every element of the \(\Delta(p, a) \) is in the support of \(\approx \) for every \(a \in \Sigma \). From here we can say that that every accessible state of \(M \) is in support of \(\approx \).
Autobisimulation

An Autobisimulation is a bisimulation \equiv_M between an automaton and itself.

Theorem: Any nondeterministic automaton M has a coarsest autobisimulation \equiv_M.

The relation \equiv_M is an equivalence relation.

Proof: let $B = \text{the set of all autobisimulation on } M$. Let $\equiv_M = \cup_{i \in B} \equiv_i$

Reflexive $= \text{due to presence of identity relation.}$

Symmetry $= (\text{by basic properties of bisimulation})$

Transitive $= (\text{by basic properties of bisimulation})$.
HOW TO GET A MINIMAL NFA

Step 1. removing inaccessible states.
Step 2. collapse by maximal autobisimulation to get minimal NFA bisimilar to original NFA.

Suppose $M = (Q, \Sigma, \Delta, S, F)$ is our original automata.
\equiv_M = our maximal autobisimulation on M.
Let p = any state of Q
$[p] = \equiv$-equivalence class of p.
$[p] = \{ q | p \equiv q \}$
$\succeq = \{ (p, [p] | p \in Q) \}$
For any $A \subseteq Q$
$A' = \{ [p] | p \in A \}$
Lemma: For all $A, B \subseteq Q$,

(i) $A \subseteq C_{\equiv} (B) \iff A' \subseteq B'$

(ii) $A \equiv B \iff A' = B'$ and

(iii) $A \succeq A'$

Our minimized NFA is the Quotient automaton

$\mathcal{M}' = (Q', \sum, \Delta', S', F')$,

Where $\Delta' ([p], a) = \Delta(p, a)'$

Δ' is well defined because

$[p] = [q] \Rightarrow p \equiv q$

$\Rightarrow \Delta(p, a) \equiv \Delta(q, a)$ by definition of autobisimulation.

$\Rightarrow \Delta(p, a)' = \Delta(q, a)'$ by our lemma.
The relation \geq is a bisimulation between M and M'.

- As we have $S \geq S'$ and if $p \geq [q]$ then $p \equiv q$
 so $\Delta(p, a) \geq \Delta(p, a)' = \Delta'(\{p\}, a) = \Delta'([q], a)$

Similarly for final states
If $p \in F$ then $[p] \in F'$
also there exist $q \in [p]$ such that $q \in F$ then $q \equiv p$.

- The only autobisimulation on the M' is the identity relation $=$.
- The quotient automaton M' is the minimal automaton bisimilar to M and is unique up to isomorphism.
If we take any automaton N bisimilar to M and we remove the inaccessible states and then collapse the resulting NFA by its maximal autobisimulation. We get an automaton isomorphic to M'. Where $\equiv_N = \text{maximal autobisimulation on } N$. $N' = \text{the quotient automaton}$. M' and N' are bisimilar gives one to one correspondence between the states of M' and N'.
AN ALGORITHM

- It computes the maximal bisimulation between any given pair of NFA’s M and N.
- In case of no bisimulations between M and N, the algorithm halts and reports failure.
- For the case M = N the algorithm computes the maximal autobisimulation.

The algorithm will mark pairs of states (p, q) where p ∈ Q_M and q ∈ Q_N.
A pair (p, q) will be marked when a proof is discovered that p and q cannot be related by any bisimulation.
Step 1: Write down table of all pairs \((p, q)\) initially unmarked.

Step 2: Mark \((p, q)\) if \(p \in F_M\) and \(q \notin F_N\) or vice versa.

Step 3: Repeat the following until no more changes occur: if \((p, q)\) is unmarked, and if for some \(a \in \Sigma\), either
- there exist \(p' \in \Delta_M(p, a)\) such that for all \(q' \in \Delta_N(q, a)\), \((p', q')\) is marked, or
- There exists \(q' \in \Delta_N(q, a)\) such that for all \(p' \in \Delta_M(p, a)\), \((p', q')\) is marked.

Then mark \((p, q)\).

Step 4: Define \(p \equiv q\) iff \((p, q)\) is never marked. If \(S_M \equiv S_N\) then \(\equiv\) is the maximal bisimulation between \(M\) and \(N\). If not, then no bisimulation between \(M\) and \(N\) exist.
THANK YOU