Turan’s Theorem

1 Introduction

Extremal graph theory is the branch of graph theory that studies extremal (maximal or minimal) graphs which satisfy a certain property. Extremality can be taken with respect to different graph invariants, such as order, size or girth. For example, a simple extremal graph theory question is ”which acyclic graphs on \(n \) vertices have the maximum number of edges?” The extremal graphs for this question are trees on \(n \) vertices, which have \(n - 1 \) edges.[3]

Paul Turan, a Hungarian mathematician, worked extensively in the fields of Number Theory and Graph Theory. He had a long collaboration with fellow Hungarian mathematician Paul Erdos, lasting 46 years and resulting in 28 joint papers. Erdos wrote of Turan, ”In 1940-1941 he created the area of extremal problems in graph theory which is now one of the fastest-growing subjects in combinatorics.” The field is known more briefly today as extremal graph theory, which is said to have been founded as a result of the following theorem by Turan.[4]

2 Turan’s Theorem (1941) - Statement

Theorem 1 Among \(n \)-vertex simple graphs with no \(K_{r+1}, T_{n,r} \) has the maximum number of edges. Here, \(K_{r+1} \) refers to the \((r+1)\)-clique and \(T_{n,r} \) refers to the Turan Graph on \(n \) vertices having \(r \) partitions.

This theorem generalises a previous result by Mantel (1907), which states that ”the maximum number of edges in an \(n \)-vertex triangle-free simple graph is \(\lfloor n^2/4 \rfloor \).” Observe that Mantel’s theorem is a special case of the Turan’s theorem with \(r = 2 \).

3 Motivation: \(k \)-Chromatic Graphs

It might be interesting to know which are the smallest and largest \(k \)-chromatic graphs with \(n \) vertices.
What is the minimum size among k-chromatic graphs with n vertices?

Proposition 1 Every k-chromatic graph with n vertices has at-least $\binom{k}{2}$ edges.

Proof A k-chromatic graph has a k-vertex coloring, which can be viewed as a k-partition of the vertex set, where each partition is an independent set. Suppose we have a proper k-coloring of a k-chromatic graph. For any pair of colors in the graph, say i and j, there exists at-least one edge with end points of colors i and j. If such an edge does not exist, then the vertices of colors i and j could be combined into a single color. As this new coloring would use fewer colors, this would contradict our assumption, that the graph is k-chromatic (cannot be colored in fewer than k colors). Since there are $\binom{k}{2}$ distinct pairs of colors, there must be at-least $\binom{k}{2}$ edges. Note that the equality clearly holds for a complete graph on k-vertices plus $n - k$ isolated vertices. □

What is the maximum size among k-chromatic graphs with n vertices?

Suppose we have a proper k-coloring. As long as we can find pairs of non-adjacent vertices having different colors, we can continue to add edges without increasing the chromatic number. Thus, to find the maximum possible edges in k-chromatic graphs, we will only consider graphs without such vertex pairs.

Definition 1 A complete multipartite graph is a simple graph G whose vertices can be partitioned into sets such that two vertices are adjacent if and only if they are not in the same partite sets. Equivalently, every component of G is a complete graph. For $k \geq 2$, the complete k-partite graph with partite sets of sizes $n_1, n_2, ..., n_k$ is written as $K_{n_1,n_2,...,n_k}$. ♦

4 Turan Graph

The Turan Graph, denoted $T_{n,r}$ is the complete r-partite graph with n vertices, whose partite sets differ in size by at-most 1. By the pigeon-hole principle, every partite set has size either $\lceil n/r \rceil$ or $\lfloor n/r \rfloor$.

Lemma 2 Among simple r-partite graphs (that is, r-colorable) with n vertices, the Turan graph $T_{n,r}$ is the unique graph with the most edges.
As discussed above, we can add edges without increasing the chromatic number until it becomes a complete multipartite graph. Now, given a complete r-partite graph with partite sets differing by more than 1 in size, we can move a vertex v from the largest partite set (size i) to the smallest partite set (size j). The edges not involving v remain the same as before, but v gains $i - 1$ neighbours in its old partite set, and loses j neighbours in its new partite set. Since $i - 1 > j$, the number of edges increases due to this switch. Hence, we maximize the number of edges only by equalizing the sizes of all partite sets, as in $T_{n,r}$.

What happens if we wish to add more edges than in $T_{n,r}$? Does it force the chromatic number to be $r + 1$? We have seen (Mantel 1907) that there are graphs with chromatic number 2, that have no triangles. But if we have edges more than $\lfloor n^2/4 \rfloor$ on an n-vertex graph, then we are forced not only to use 3 colors, but also to have K_3(triangle) as a subgraph. Turan generalised this as follows: For an r-colorable graph with n vertices, if we go beyond the maximum no. of edges, then we are forced not only to use $r + 1$ colors, but also to have K_{r+1}(i.e $r + 1$-clique) as a subgraph.

5 Turan’s Theorem (proof)

Theorem 3 Among the n-vertex simple graphs with no $r+1$-clique, $T_{n,r}$, has the maximum number of edges.

Proof Every r-colorable(or r-partite) graph, including Turan graph $T_{n,r}$, has no $r + 1$-clique, since each partite set contributes at-most one vertex to each clique. If we can prove that the maximum edges is achieved by an r-partite graph, then Lemma 2 implies that the required graph is $T_{n,r}$. Thus, it suffices to prove that for every graph G that has no $r + 1$-clique, there is an r-partite graph H with the same vertex set as G i.e $V(H) = V(G)$, and at-least as many edges i.e $e(H) \geq e(G)$.

1-3
We prove this by induction on \(r \).
For the base case \(r = 1 \), any simple graph with no 2-clique is a null-graph (graph with no edges), and is trivially 1-partite. Thus, in this case, \(H = G \).
For the induction step, \(G \) is an \(n \)-vertex simple graph with no \(r+1 \)-clique, where \(r > 1 \). Let \(x \in V(G) \) be a vertex of degree \(k = \Delta(G) \). Let the sub-graph \(G' \) be the induced sub-graph of \(G \) by the set \(N(x) \), where \(N(x) \) is the set of neighbours of \(x \).

Claim 4 If \(G \) has no \(r+1 \)-clique, then \(G' \) has no \(r \)-clique.

As \(x \) is adjacent to every vertex in \(G' \), if \(G' \) had an \(r \)-clique then \(G \) would have an \(r+1 \)-clique, which would be a contradiction.

Thus, we can apply the induction hypothesis to \(G' \). Thus, there exists an \(r-1 \)-partite graph \(H' \) with \(V(H') = V(G') = N(x) \) and \(e(H') \geq e(G') \). Note that \(V(H') = N(x) = k \). Let \(H \) be the graph formed from \(H' \) by joining all of \(N(x) \) to all of \(S = V(G) - N(x) \). Since \(S \) is an independent set of \(n - k \) vertices and \(H' \) is \(r-1 \)-partite, thus \(H \) would be \(r \)-partite.

Claim 5 \(e(H) \geq e(G) \)

By construction, \(e(H) = e(H') + k(n - k) \). We also have \(e(G) \leq e(G') + \sum_{v \in S} d_G(v) \) as the difference of edges between \(G \) and \(G' \) would only consist of those edges that have at-least one end-point in the set \(S = V(G) - V(G') \). Note that the edges with both end-points in the set \(S \) are counted twice. Since \(\Delta(G) = k \), we have \(d_G(v) \leq k \) for each \(v \in S \). As \(|S| = n - k \), we have \(\sum_{v \in S} d_G(v) \leq k(n - k) \). Therefore, we have

\[
e(G) \leq e(G') + \sum_{v \in S} d_G(v) \leq e(G') + k(n - k) \leq e(H') + k(n - k) = e(H).
\]

Example: *Distant pairs of points* [1]

In a circular city of diameter 1, we might want to locate \(n \) police cars to maximize the number of pairs that are far apart, say separated by distance more than \(d = 1/\sqrt{2} \). If six cars occupy equally spaced points on the circle, then the only pairs not more than \(d \) apart are the consecutive pairs around the outside: there are nine good pairs. Instead, putting
two cars each near the vertices of an equilateral triangle with side-length $\sqrt{3}/2$ yields three bad pairs and twelve good pairs. (This may not be the socially best criterion!) In general, with $\lceil n/3 \rceil$ or $\lfloor n/3 \rfloor$ cars near each vertex of this triangle, the good pairs correspond to edges of the tripartite Turan graph.

Figure 4: [1]

References

